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variance equation, is completely eliminated. Open boundaries can be handled as long
the ocean model is well posed. Well-known numerical instabilities associated with the
or covariance equation are avoided because storage and evolution of the error covariance
matrix itself are not needed. The results are also better than what is provided by the
extended Kalman filter since there is no closure problem and the quality of the forecast error
tistics therefore improves. The method should be feasible also for more sophisticated
primitive equation models. The computational load for reasonable accuracy is only a
fraction of what is required for the extended Kalman filter and is given by the storage of,
'say, 100 model states for an ensemble size of 100 and thus CPU requirements of the order
‘of the cost of 100 model integrations. The proposed method can therefore be used with
realistic nonlinear ocean models on large domains on existing computers, and it is also well
“suited for parallel computers and clusters of workstations where each processor integrates

‘afew members of the ensemble.

Introduction

" “The implementation of the extended Kalman filter for data
assimilation in a multilayer quasi-geostrophic (QG) model
has previously been discussed by Evensen [1992, 1993].
The main result from Evensen’s work [1992] is the find-
ing of an apparent closure problem in the error covariance
evolution equation. The extended Kalman filter applies a clo-
sure scheme where third- and higher-order moments in the
error covariance evolution equation are discarded. This sim-
Dle closure technique results in a unbounded error variance
growth caused by the linearization performed when higher-
order moments are neglected. However, a promising result
from this work was that the error growth could be avoided by
excluding a specific term in the transition matrix that caused
the error growth, and this approach led to good results in a
simple data assimilation experiment.

Evensen [1993] extended the work to include the possibil-
ities of using open boundaries with in- and outflow with the
extended Kalman filter. It was pointed out that even if open
boundaries can be used without much difficulty in the pure
ocean model, they significantly complicate the treatment of
the error evolution equation, where approximate methods
must be used. These approximations, although consistent,
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lead to some serious difficulties in conserving the definiteness
of the error covariance matrix during long time integrations.
This work showed that even if open boundaries could be han-
dled, they resulted in rather unstable numerical algorithms.

The important conclusions from these two works are that a
sequential data assimilation algorithm gives good results in a
data assimilation scheme for the nonlinear QG model and that
the results improve significantly according to improvements
in the error estimate for the model forecast.

The updating scheme in the Kalman filter requires that
the error covariance matrices for the model forecast and the
measurement vector be known every time measurements are
available. Results from Evensen [1992, 1993] and the addi-
tional fact that the Kalman filter is extremely expensive to
compute, even for modest problem sizes, motivate the search
for new methods for error covariance evolution or estimation.
Such methods should include both the effect of internal error
growth caused by the unstable dynamics in nonlinear ocean
circulation models and the external error growth associated
with the imperfection of the numerical ocean model.

The connection between stochastic dynamic prediction
and the error covariance evolution used in the extended
Kalman filter is discussed on the basis of the general theory
of error evolution and prediction. The approach of stochas-
tic dynamic prediction was first proposed by Epstein [1969],
and several papers have later extended this theory, mainly in
connection with simple spectral models in meteorology; see
for example, Gleeson [1970], Fleming [1971a, b], Epstein
and Pitcher [1972], Leith [1971, 1974], and Pitcher [1977].
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These papers discuss both the use of Monte Carlo methods
and the approximate stochastic dynamic prediction for find-
ing approximate solutions of the equation for the probability
density function. For an application in oceanography, see
Salmon et al. [1976]. Two more recent applications in me-
teorology are given by Seidman [1981], who examined the
predictability of a general circulation model, and Schubert
and Suarez [1989] who discussed the application of Monte
Carlo methods for error prediction in an atmospheric primi-
tive equation model. Different alternative Monte Carlo meth-
ods suitable for stochastic dynamic prediction were discussed
by Hoffan and Kalnay [1983] and Schubert et al. [1992].

Here, after an introduction to stochastic dynamic predic-
tion, the approximate equation for the error covariance evolu-
tion that is used in the extended Kalman filter and the prob-
lem of using a proper closure for this equation are briefly
discussed.

It is then shown that the Monte Carlo method can be used
as an alternative to the approximate error covariance evolu-
tion equation used in the extended Kalman filter to provide
the forecast error estimate with a significantly lower com-
putational cost and without any closure problem or even the
problem with open boundaries.

Next, a procedure for applying ensemble statistics in the
Kalman filter updating scheme for data assimilation is out-
lined. Finally, the proposed data assimilation method is
examined in a twin experiment.

Equations for the Layered Model

The ocean model is the multilayered and nonlinear quasi-
geostrophic model on an f plane [see Pedlosky, 1987] and has
been applied and further discussed by Haugan et al. [1991]
and Evensen [1992, 1993]. It describes conservation of po-
tential vorticity (; in each layer on an f plane. The mean
layer thicknesses are D;, and the density in each layer is pi,
where [ denotes layer number; [ = 1 in the upper layer. ¥,
is the stream function in layer I. The horizontal length scale
Rg is the internal Rossby radius of deformation of the upper
layer, given by R% = [(p2 — p1)gD1] / [pof?], where g is
gravitational acceleration, pg is averaged density, and f is
the Coriolis parameter. The characteristic horizontal veloc-
ity is U, yielding a time scale T' = R4/U. The pressure
scale is po fU Ry, and the stream function scale is U 4. The
nondimensional quasi-geostrophic equations are

d 0 a
(5_24_“155 +'U["5'§)CI—O, l_ivnzr (1)

where n, is the number of layers, and the velocities are the
geostrophic approximations
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The vorticity in each layer is given by
(1= V21 + fri (Y2 — Y1), (3a)
G =V — fr (¥ — Y1)
+ fri (Wi — ), (3b)
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where [ denote the intermediate layers [ = 2,...,n, — 1.
When ¢ is known, this is a set of coupled Helmholtz equations
for the stream function . The horizontal Laplacian operator
is V2 = 82/0%z + 6% /0%y, and the constants fr, | and fr; ,
are “‘nondimensional Froude numbers™: ,
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The bottom topography term is
h
e ®)

)
Dy

with ¢ as the Rossby number and h as bottom topography.
Note that when discretized in space, the QG model can be
written as

O

where 1) is the state vector, and g is a nonlinear vector func-
tion.

Theory of Stochastic Dynamic Prediction

Ocean models are integrated forward in time from a spec-
ified initial state. The initial condition will normally be a
judicious best guess or an estimate interpolated from mea-
surements of the real ocean. It is recognized that the esti-
mated initial state contains errors. Both the sparseness of the
measurements, whereby all the scales of the physical system
are not resolved, and the interpolation method cause the esti-
mate to depart from the true state. Further, the estimate will
be affected by errors in the measurements. .

The choice of another interpolation scheme or just dif-
ferent statistical parameters in the interpolation scheme will
produce another initial state resulting in a different forecast
even if the same deterministic model is applied. It is not pos:
sible to say that the forecast based on any of the interpolated
initial conditions is right or wrong or better or worse, since
each inifial state estimate represents an individual member
of an infinite ensemble of possible states that are consistent
with the data.

In his classic paper, Epstein [1969, p. 740], wrote th
“The different analyses will yield different forecasts, even if
each were submitted to the same forecast procedure. If there
is no way of determining which, if any, analysis is right, and
since none is known to be wrong, there is no way of knowing,
in any instance, which to believe.” :

The state of the ocean at a particular time ¢ is represented
by a vector of state variables ¥(t) € R", where the co
ponents in the state vector are the values of all dependen
variables in the model. Based on the representation us
the components may be values of fields of physical variables.
such as velocities and density over an array of space mt?ﬁl.{
points or the amplitudes of an orthogonal function expans!
of these physical fields. .

The state vector at a specified time +(t) can be repr®
sented by a single point in an n-dimensional phase spacc
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_Thus time evolution of the state vector 1(¢) is described by
_continuous motion of the point along a trajectory in phase
j'_SpaCC.

.~ Theuncertainty in the initial state vector can be represented

.;;‘_by a large ensemble of possible initial states, each assigned an

~individual probability number. Such a cloud of phase points

'surrounding the analyzed initial estimate (¢t = 0) (repre-

~ sented by the big dot) is illustrated in Figure 1. Suppose there

~are N points altogether, where IV is a very large number, and

“dN is their density (points per volume increment) at any lo-

“cation. As the number of such phase points approach infinity,
one can define a probability density distribution function

N

o(w) = o, )

“4'which can vary throughout the space. The expression

$(¢)dyp ()

s defined as the probability of a phase of the system being

Jocated at a certain instant inside the n-dimensional volume

_element d+p located around the point 1. The probability

~density ¢ must be defined over all of the phase space, and

¢ > 0forall 4 and t. As the total probability of finding the
- system in some arbitrary phase is equal to unity, one has

| [ e =1, ©
‘where the integration is performed over all of the phase space.
" Given a probability density function ¢(s), the expected
- value of a quantity h(4)) is defined as

R = [ hwsw)de. (10)
-_ "The following moments can then be defined:
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- Figure 1. An ensemble of possible initial states of the ocean model

.~ ‘an be represented in an n-dimensional phase space as a cloud of
- boints, where each point represents an individual state.
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Pij =(thi — pi) (W5 — p4) (12)
Oujik =(vi — 1) (Y5 — 15) (WPr — pae) (13)

Uijie =¥ — pa) (Y5 — 115) (e — pe) (W — ) (14)

where 1; is the mean, P;; is the variance (¢ = 5) and covari-
ance (1 # j), and Oy and Iy, are third- and fourth-order
moments, respectively. Higher-order moments can also be
defined.

It is usually assumed that the probability function for the
initial state ¢(4, t = 0) is a normal distribution with a speci-
fied mean p(t = 0) and covariance P;;(t = 0). Note that for
the initial state, the mean u(t = 0) coincides with the initial
estimate 1(t = 0). The variance of the distribution deter-
mines the uncertainty of the initial state, and the probability
decreases when one moves away from the mean u(t = 0).

In this formalism the time evolution of different ocean
states is described by continuous motion of the respective
points through the phase space. This is a completely deter-
ministic process, in which a given initial state generates a
definite phase path into the future. The time evolution of an
ensemble of phase points is illustrated in Figure 2.

During the time integration the central forecast (the single
forecast generated from the analyzed initial estimate), may
drift away from the forecasted mean state (most probable
state). Note also that the ensemble forecast may deform
and expand or contract in size. The predicted errors are
determined by the variance of the forecasted ensemble.

The next issue concerns the time evolution of the proba-
bility density which contains all the statistical information
about the ensemble. The ensemble of possible states moves
through the phase space governed by dynamic laws. The
density of the ensemble has an associated probability, so that
the dynamic equations can be used to generate probability
predictions as well as predictions of the physical state itself.
Each of the initial states in a volume element daf will evolve

Cod

Figure 2. The time evolution of an ensemble of initial states in phase
space is illustrated.
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according to the same deterministic model, and no members
of the phase points in d+p may be created or lost. This is sim-
ply the conservation law of probability and may be expressed

as
o
+ Z ;fpfb 0, (15)

where 1; = O; /0t is the “velocity” component in the 1;
direction as determined by model equation (6). This equa-
tion states that the local change of probability density with
time in phase space 0¢/Jt balances the “probability flux”
represented by the remaining terms in the summation. Note
the similarity to the continuity equation for mass density in
hydrodynamics. Given appropriate boundary conditions for
¢ (e.g., ¢ — 0 as 9p; — =£oo) and an initial probability
density ¢(p,t = 0), this equation can be integrated to ob-
tain ¢(+p,t) for t > 0. However, the integration by direct
numerical methods is impractical because of the size of the
problem. The continuity equation for the probability density
¢ provides a natural criterion for error growth/decrease, and
it can be written as

0 ., O¢
——t+§¢i§¢—

The right-hand side of this equation is a divergence term
which describes either increase or decrease in the probability
density or, alternatively, contraction or expansion of the cloud
of phase points. With the right-hand side equal to zero, (16)
reduces to the Liouville’s theorem for conservative systems
in statistical mechanics (e.g., Delcroix [1968]).

If d¢/dt, the change of ¢ following a point in the en-
semble, is positive (negative), the ensemble is converging
(diverging) and the errors are decreasing (increasing). This
process can be illustrated using a simple example with a one-
dimensional advection and diffusion equation. Consider the
linear advection-diffusion equation discretized in space:

Z gz* (16)

a—'@[)i = ¢i+l T 7/)1;—- ¢i+l . 2#": + wz— (17)
ot 2Az Az? :
Equation (16) then becomes
2n
2y Z gy = 2 20 18)

The advection term in (17) has no contribution on the right-
hand side in (16). This represents a property of conservative
systems where the probability density is conserved with the
motion in phase space [see Gleeson, 1970]. The diffusion
term causes the system to lose energy; that is, the variance
is decreasing. This leads to increasing probability in (18),
which is equivalent to increasing predictability.

The divergence term on the right-hand side is zero for a
conservative system like the QG model [see Salmon et al.,
1976]. . Equation (16) then becomes Liouville’s theorem,
which states that the density of the ensemble is conserved
with the motion along a path in phase space. Consider the
volume element dD in phase space at time ¢, containing a
cloud of points representing states with specific probabilities.
At time t + §t, the points fill another volume element dD’ of
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the phase space. Liouville’s theorem then states that dD =
dD', and noting that no points are lost or gained from the
volume during the integration, the probability of finding the

system in D’ is equal to the probability of finding it in dD.

The total predictability of the state of the ocean then neither
improves nor deteriorates in time. Note that the volume
is still freely deformable, diverging in one dimension and
converging in another, and the variance of the ensemble may
change at different positions even though the energy for each
of the ensemble members is conserved.

The formulation and methodology in the field of inverse
methods and data assimilation traditionally assume that the

‘dynamical model contains errors. These errors are assumed

to be random white processes with a specified variance,

When including the model noise in the ocean model (6),

it becomes

dyp = g(4, t)dt + db, (19).

where db € R™ is a vector of random white noise with
mean zero. This equation is an Itd stochastic differential
equation describing a Markov process. The evolution of the
probability density for this equation is described by the for-
ward Kolmogorov’s equation (also called the Fokker-Planck

equation): :
0 a2
Z gt¢ Z ng @ ’ 0y
o~ A2 0904,
where () = bbT is the covariance matrix for the mod
errors. A derivation of this equation is given by Jazwi

ski [1970, p. 129]. For the QG model it can be simplifie

to

i

- Qi &9
+Z Z 2 Wow

The stochastic forcing introduces a diffusion term that ten
to flatten the probability density function (spreading the e
semble) during the integration; that is, the probability d
creases and the errors increase. :

If this equation could be solved for the probability densi
function, it would be possible to calculate statistical moments
like the mean state and the error covariances at different tim
levels. Actually, an analytic steady state solution of Ko
mogorov’s equation for the double-well problem, containin
only one state variable, was found by Miller [1994], but fc
multidimensional ocean models it is not a realistic task
solve it. :

A linear ocean model for a Gauss-Markov process in whi¢
the initial condition is assumed to be taken from a norm
distribution N (1£(0), P(0)) will have a probability densi
which is completely characterized by its mean p(t) and ¢
variance matrix P(t) for all times. One can then deri
exact equations for the evolution of the mean and the ¢
variance matrix as a simpler alternative than solving the
Kolmogorov’s equation. Such moments of Kolmogoroy.
equation are easy to derive, and several methods are illu$
trated by Jazwinski [1970, examples 4.19-4.21]. .

For a nonlinear model, the mean and covariance matl!
will not in general characterize ¢(1,t). They do, howeve
determine the mean path and the dispersion about that path
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-:-:and it is possible to solve approximate equations for the
‘moments, which is the procedure characterizing the extended
In the next section such equations will be

‘Approximate Stochastic Dynamic Prediction

he multilayer QG model given by Evensen [1992, 1993]
- was written in vector notation as

Lppyy = £(9py) —

where L is the discretized Helmholtz operator, and f(1;,) is

Lvitt, (22)

e

anonlinear vector function containing the advected vorticity
the boundary stream function values. The last term
~ contains random white noise due to errors in the imperfect
‘model. An equation for the propagation of the mean can

be derived by taking the expected value of the ocean model

Lpgyy = £(y). (23)
The nonlinearity of f(4,) makes it impossible to evaluate
the exact value of the right-hand side of (23). Thus for

nonlinear models, it is impossible to derive a closed finite set
equations for the moments, and approximative methods

must be applied. It is appropriate to express f(v;) as a

Taylor expansion about the mean pr.. With the definitions of
- the tangent linear operator

T

_r _ 0fi(y) =
el ey v sz M
tﬁéHessian
P o ath_(,d))
wh =M = 25002 = IVEWlyoy,  @9)
& fi(xp)

T =Ty = —2 12 = o
: S W $=p R e

~ Wherei, j, k, and [ are dummy indices, the third-order Taylor

pansion for the vector function f (/) about the mean p can

- then be written

1
f(u + Ap) = £(n) + FAy + SH(ApAy")

(A¢A¢A¢) (27)

es of (22) and (23) yields, respectively,
Lpgy = £uy) + Feltpy, — Ly

1 1
+ 5 e (MprAgi) + T (A dppAgsy) + -, (28)

1 1
Ly = 1£(py) + EH}%P}: + 65'19;3 e (29)
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where k now is the time index. By dropping the last term con-
taining the third-order moment in (29), one has the standard
equation for the evolution of the mean. Thus an approxi-
mate equation for evolution of the first moment (mean of the
ensemble) is dependent on the second-order moment (covari-
ance matrix), and also higher-order moments if more terms
are included from the Taylor expansion (27).

An approximate equation for the second-order moment
can be derived by inserting (28) and (29) in the definition of
the covariance matrix at time ¢; and taking the expectation
of the resulting equation, which gives

LPoy1 LT = FyPoFl + LQgw1 LT + FrOyHF

1 1 1
+ ZHkaHE + g]fkl“k’lf - ZHkPkP,;fH,E

1 1
= ngPkG)zﬂT - é‘éﬂek@};’)f +---,  (30)

where Q41 = vvT is the model error covariance matrix. Of
course, for solving (29) and (30) it is also necessary to include
equations for © and I', which again requires references to
higher-order moments. This has been illustrated for the case
with a zero dimensional model by Miller et al. [1994].

It is quite apparent that the equation for the evolution of
the mean (29) and the equation for the covariance matrix (30)
are an unclosed system of equations. The expansion of the
nonlinear term contain references to infinitely many higher-
order statistical moments. Thus to integrate these equations,
a closure scheme must be applied. In the standard form
of the extended Kalman filter, one will normally close the
system by neglecting all moments with higher orders than
the covariances. However, higher-order turbulence closure
schemes have been discussed by, for example, Leith [1971,
1974], Leith and Kraichnan [1972], and Fleming [1971a, b].
An example is the eddy-damped quasi-normal closure where
a “damped” equation for the third moment © is included and
the fourth-order moment is expressed in terms of products of
the second-order moment, which is a valid approximation for
a multivariate normal distribution. Variants of this scheme
were tested and compared with results from Monte Carlo sim-
ulations by Fleming [1971a]. He found that the higher-order
closure significantly improved the results, and it should also
improve the results for the evolution of the error statistics in
the extended Kalman filter for the QG model. Note that these
studies were all performed using spectral models including
only a few wave modes. For today’s standard ocean models
it is not practical to store higher order moments on existing
computers.

Another issue for discussion is whether one should inte-
grate the model equation for the central forecast or the equa-
tion for the mean. In previous applications of the extended
Kalman filter, the pure model equation has been used in favor
of the equation for the mean. However, in a recent paper,
Cohn [1993] suggested that for weather forecasting the equa-
tion for the ensemble mean should be used. This argument
was based on analytical calculations with the Burgers equa-
tion, where it was found that biasing the model also saturated
the error growth in the error covariance equation.

To saturate the error growth in the QG model, the vor-
ticity is required to approach zero, since nonzero vorticity
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leads to a nonzero error growth term (see the discussion by
Evensen [1992]). For a long time integration of the conser-
vative QG model, one would expect the mean to approach
zero, at least for a case with flat bottom topography and no
external forcing. This would then result in a vanishing error
growth term, and this effect might correspond to the result
found by Cohn [1993] when using the equation for the mean
saturated the error growth. It is believed that a physically
more acceptable error growth saturation must be the result
of a higher-order closure in the actual error covariance equa-
tion. However, it would be interesting to see an experiment
in which the equation for the mean is used.

If the mean is used as the estimate for the forecast, this
might in some cases lead to nonphysical results. As an exam-
ple, one could consider the double-well problem discussed by
Miller et al. [1994] and Miller [1994]. In that case there are
two stable solutions (one in each of the wells) and one unsta-
ble solution between them. The mean solution would here be
given by the unstable equilibrium in between the physically
realistic solutions. A similar problem arises when one stud-
ies the two stable equilibria of the Kuroshio, where the mean
again would correspond to a nonphysical solution that never
exists somewhere in between the two stable meanders [see
Miller, 1994]. This problem might occur in all cases where
the ensemble has a nonnormal probability distribution. See,
however, the discussion below in the section containing the
data assimilation experiment for the case where the ensemble
is converging owing to assimilation of data.

Note that in this discussion it is the covariance matrix
of the ensemble that has been referred to and not the error
covariance matrix, which is used in the extended Kalman
filter. However, by using the equation for the evolution of
the true state 1/,

Ly = (i) — LV, 31)
and the equation for a model forecast { 41 calculated from
the analyzed estimate 4%, ‘

L¢§c+l = f(d’i):

and then performing a Taylor expansion similar to (27) but
this time about the analyzed state estimate, one can derive
an equation for the analyzed/forecast error covariance matrix
P = (4 — ") (9p™F — 4t). This equation will be iden-
tical to the covariance evolution equation above except that
the operators (24) — (26) are calculated at the analyzed model
state instead of the mean.

(32)

Monte Carlo Methods

An alternative to the approximate stochastic dynamic ap-
proach for solving Kolmogorov’s equation and predicting the
error statistics is to use Monte Carlo methods. A large cloud
of states, that is, points in phase space, can be used to rep-
resent a specific probability density function. By integrating
such an ensemble of states forward in time, it is easy to cal-
culate approximate estimates for moments of the probability
density function at different time levels. In this context the
Monte Carlo method might be considered a particle method
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in phase space. When the ensemble size N increases, the er. equaltoe™
rors in the solution for the probability density will approach function fo
zero at a rate proportional to 1/ v/N. For practical ensemble Evensen
sizes, say, O(100), the errors will be dominated by statisti. written as :
cal noise, rather than by dynamical errors as in approximate
stochastic dynamic prediction. Fy =
In the Monte Carlo method, one first calculates a best guess
initial condition based on information available from data
and statistics. The model solution based on this initial state Here L is
is denoted the central forecast. The uncertainty in this begt advection «
guess initial condition is represented by the initial variance, The first te
An ensemble of initial states is then generated in which the advection ¢
mean equals the best guess initial condition and the variance velocity fie
is specified on the basis of knowledge of the uncertainty in The secc
the first-guess initial state. The covariance or smoothness tion operat
of the ensemble should reflect the true scales of the systegﬁ, operator til
that is, the internal Rossby radius for the QG model. A that causes
procedure for generating such pseudo random fields w1thja filter. See ¢
specified variance and covariance is outlined in the appendix. .
The effect of external error growth must be included to Descriptio
give reliable estimates for the evolution of errors. In the The follc
approximate stochastic dynamic method, this can be done similarities
rather simply by adding the system error covariance mau‘ifx ance evolut
every time step. However, in the Monte Carlo method, an- simulation:
other approach must be used. Little is actually known about model erro
model errors, but a crude way to model them is to force the forstudyin
QG model with smooth pseudo random fields with a spee-
ified variance and covariance. This will provide a realistic Case Af
increase in the ensemble variance, provided that the estimﬁi@: integrate tt
of the model error variance is reasonably good. . moments v
zero. The
Error Prediction Experiment HEbeumaee
i Case AS
Cohn [1993] suggested that the approximate stochas"i;_f: only the fis
dynamic equations should be used to predict the evolution integrate tt
of the error covariances. The main argument was that these in the error
equations are the governing equations for the error covar- tion of the
ance evolution and give a good approximation for the Cljl;g;f stream fun
covariances for short time integrations, an argument which was shown
was also supported by Lacarra and Talagrand [1988] and Kalman fil
Budgell [1986]. In the next examples it will be illustrated |
: ) : E Case M
how the approximate error covariance solution departs from the Mont
an “exact” solution based on Monte Carlo methods. bei TI}I):
The case used for illustrations here is essentially the s g Outl'- di !
as thatused by Evensen [1992]. A square 17x 17 grid and {W0 St
layers with closed boundaries and a linearly sloping botto! Case M
with increasing depth in the positive y direction are used as case M(
The initial stream function field consists of an anticycl 0 500 mer
eddy in the center of the domain with the same amplitude Carlo mett
in both the upper and the lower layers (see upper left pl
Figure 4). Mgase M
The initial error variance field is assumed to have 100, 1
variance at the closed boundaries where the solution is dofn fields
sumed to be exactly known and has a smooth increase Noise.
error variance to an amplitude of 0.25 at a couple of Rossb
radii from the boundaries (see upper left plot in Figure 5 Ensemble
The structures of the error covariance functions are d .
termined by the same exponential relation as that used In Figur
Evensen [1992], with a horizontal decorrelation scale of thsemble i
and a vertical decorrelation factor between the two 12 and the fin
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equal to e~19 (see also the appendix). The initial covariance
function for the upper layer is shown in Figure 7.

Evensen [1992] showed that the transition matrix could be
written as a sum of two terms:

or(4)

fk:F(¢z)L+ 61,[)

(Ly* + ). (33)

b=y

Here L is the Helmholtz operator, I'(+) is the nonlinear
advection operator, and 7 is the bottom topography term.
he first term in the transition matrix then describes pure
vection of the covariance vorticity by the model estimated
velocity field.

~ The second term is a result of the nonlinearity of the advec-

-~ tion operator and it contains the derivatives of the advection

_-"'ﬁ.-_'-.opcrator times the stream function vorticity. It is this term
~ that causes the internal error growth in the extended Kalman
. filter. See also the extensive discussion by Evensen [1992].

= . Description of Cases

- The following cases are run to illustrate the differences and
similarities between the approximate stochastic error covari-
ance evolution (ASDP) and the method based on Monte Carlo
~simulations (MCS). Except for the last case MCS100n no
model error is included since these experiments are designed
for studying the dynamical evolution of the error covariances.

i Case ASDP. The full transition matrix has been used to

he estimate
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integrate the standard error covariance equation, that is, all
moments with an order higher than 2 in (30) have been set to
zero. The internal error growth is included, but it becomes
unbounded because of the use of a too simplified closure.

- Case ASDPs. Case ASDPs is a simplified case in which
only the first part of the transition matrix has been used to
integrate the error covariance equation. The term resulting
in the error growth is neglected, and only the effect of advec-
tion of the error covariance vorticity in the model estimated
stream function field is included. This simplified approach
was shown by Evensen [1992] to work well with the extended

- Kalman filter.

Case MCS100. The error evolution is computed using
the Monte Carlo method with an ensemble size of 100 mem-
bers. The initial ensemble is generated using the procedure
outlined in the appendix.

- Case MCS500. Case MCS500 uses the same parameters
as case MCS100, but the ensemble size has been increased

0 500 members for verification of the accuracy of the Monte

Qarlo method.

Case MCS100n. Case MCS100n is the same as case
MCS100, but the ensemble is forced by smooth pseudo ran-

‘dom fields with variance equal to 0.0001 to simulate system
hoise,

ansemble Solutions

wIn Figure 3 the first six stream function fields from the

ensemble in case MCS100 are shown at the initial time ¢ = 0

-nd the final integration time ¢ = 200 in both the upper and
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lower layers. Several interesting conclusions can be drawn
from these results.

Note first the specified correlation between the stream
function in the upper and lower layers for the initial time and
the significantly stronger correlation at the final time. An
explanation for the increase in correlation is that the model is
forced only through interaction with the bottom topography
and that the upper layer stream function adjusts to the lower
layer stream function.

When the ensemble solutions at ¢ = 200 are examined,
there seem to exist two “quasi-equilibrium” states, one in
which most of the energy is contained in an anticyclonic
eddy close to the boundary y = 1 in the shallow part of the
domain and another in which the energy is contained in a
cyclonic eddy close to the boundary y = 17 in the deep part
of the domain. By examining a larger part of the ensemble
solutions, it was found that about one third of the ensemble
members approached the cyclonic state, while about two
thirds ended in the anticyclonic state, except for a few cases
in which other states were approached, for example, the
sixth ensemble member in Figure 3. Thus even this simple
example seems to evolve toward a non-Gaussian distribution
function.

There is also an increase in the horizontal correlation
scale; that is, the final states are smoother than the initial
states. This is to be expected for QG models on the basis of
two-dimensional geostrophic turbulence which has been dis-
cussed by Pedlosky, [1987, pp. 169-177]. For motion subject
to quasi-geostrophic dynamics there will be a transformation
of energy to larger scales (smaller wave numbers), accompa-
nied by a transfer of enstrophy to smaller scales (larger wave
numbers).

The large difference in the stream function solutions for
the members of the ensemble also provides a warning against
having too much faith in a single forecast of an ocean model.
When a simple model like the QG model has such a compli-
cated behavior, one sheuld certainly not expect more sophis-
ticated primitive equation models to provide results with any
greater predictability.

Evolution of the Central Forecast and Mean

In Figure 4 the upper layer stream function is shown at dif-
ferent time levels for the central forecast in the first column,
and the ensémble means from the three Monte Carlo cases
MCS100, MCS500, and MCS100n are shown in the next
three columns. Note first the similarity between the solu-
tions in cases MCS100 and MCS500. This actually suggests
that an ensemble size of O(100) is sufficient to calculate the
mean with reasonable accuracy. In these two cases the mean
solutions have some structures similar to those of the central
forecast. However, the amplitudes are lower, and the mean
solution contains less energy. Note again the non-Gaussian
distribution of the final ensemble, which explains the lower
amplitudes in the forecast mean. Actually, if the ensemble
members were distributed equally between the two states,
the mean solution would be close to zero.

The case which is forced by external errors produces a
significantly different mean solution which is more energetic
than the unforced cases. The external forcing therefore has
a significant impact on the ensemble, and it also seems to
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provide a different final distribution function, with a larger
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fraction of the members in the anticyclonic state.

Evolution of Error Variance

Evensen [1992] discussed the instability in the error co-
variance equation and proposed a few approaches for han-
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Figure 4. Evolution of the central forecast and mean generated by Monte Carlo simulations. The contour interval is

0.2.

case ASDPs. This eliminated the unboundedness of the error
growth, but the true effect of internal error growth caused by
the inherent dynamical instability in the model was lost.
Figure 5 shows the evolution of error variance for the cases
described above. Note that the contour interval in case AS-
DPS is 0.025, while the rest of the plots in this figure use an
interval of 0.1. In case ASDP the errors start growing expo-
nentially at an early stage, and after time ¢ = 20 the errors
are unrealistically high. For even longer time integrations the

errors grow exponentially until the gradients in the covari-

ance functions become too steep and the numerical schemes
are unable to solve the error covariance equation with any

accuracy. This causes the error growth to be limited by the
diffusion and dispersion in the numerical schemes. In case
ASDPs it is clearly seen how the errors decrease because
of diffusion in the numerical schemes and there is no error
growth.

The error variance evolution in the Monte Carlo method
seems to be more realistic. The errors increase rather quickly
in the first stage of the integration, but after a while the er-
ror growth saturates and a stable error level is approached.
Note the similar structures in the errors for cases ASDP and
MCS500 at time ¢ = 10 and ¢ = 20. The locations of the
error growth are essentially the same but the error growth is
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ASDP ASDPs MCS100 MCS500 MCS100n
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the effect of the diffusion term becomes very small after the
variance has increased a certain amount, and the contribu-
- tion of the external error growth will then be less important.
Comparing case MCS100n to case MCS100 illustrates how
ystem noise leads to a stronger error growth.
" The evolution of the mean square errors are shown in
. Figure 6. One first notices the strong error growth for t €
£O= 40] for case ASDP and then the failure of the numerical
 schemes which produces results with no physical reality. The
. two unforced Monte Carlo runs, MCS 100 and MCS500, have
similar behaviors and stay close all through the integration.
_ Note also the saturation of the error growth. The forced
- Monte Carlo run, MCS100n, has a stronger error growth in
~ the beginning and seems to saturate but with larger errors.
- ’fhc simplified case ASDPs predicts an unrealistic decrease
| inerrors which is caused by diffusive effects.

" Evolution of Error Covariance Functions

To illustrate how the error covariances evolve in time for
the different cases discussed above, the covariance function
corresponding to grid-point (6, 6) in the upper layer is shown
in Figure 7 for the same time levels and cases as in Figure 5.
Actually, it is hard to compare covariances between the dif-
ferent cases because of the dependency on the respective
vhiiance fields, that is, the amplitudes should not be com-
pared. The covariance functions at time ¢ = 10.0 have a
rather similar structure for all the cases. Att = 20.0 it is
hard to compare cases ASDP and ASDPs with the Monte
Carlo cases because the error variance fields are rather dif-
ferent. However, for the three Monte Carlo cases, one notices
the similarities in structure and horizontal scale. Note also
the increasing horizontal scale of the covariance functions.
This is also reflected by the smoother solutions in the final
‘ensemble solutions in Figure 3.

An Alternative to the Extended Kalman Filter

The results from the previous sections on error prediction
‘using Monte Carlo methods are encouraging with respect to
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10,153

applying them for error evolution in the Kalman filter. It
is actually possible to calculate reasonable statistics using
an ensemble size of O(100) members. This corresponds
to a numerical load where the required CPU equals O(100)
model integrations and the storage is O(100) model state
vectors of dimension n. This should be compared to the
extended Kalman filter, which requires 2n model integrations
and storage of the error covariance matrix of dimension n2.
Note also that the required storage and CPU increase linearly
with the size of the state vector for the Monte Carlo approach.
There are, then, two main issues to consider. A method is
required for assimilating the measurements and calculating
an updated state estimate. One also has to modify the error
statistics by operating on the ensemble in some way.

Updating the State Estimate

When the error statistics of the measurements z; and the
forecast state estimate q’:fc are described by their respective
error covariance matrices Ry, and Py, the optimal linear com-
bination of measurements and state estimate becomes

¥ = ¥ + Ki(zx — Hih), (34)
where the Kalman gain K}, is given by
Ky = PLHI[H PEHT + Ri] ™" (35)

Covariance functions can be calculated directly from the
ensemble, and it is therefore a simple process to generate a
gain matrix from formula (35) using ensemble statistics and
without storing the full error covariance matrix P. The mea-
surement matrix will normally contain only a few nonzero
elements in each row; that is, each row relates the stream
function field to a measurement.

The product PH™ can be generated by calculating only the
covariance functions (columns in P), which correspond to
nonzero elements in the measurement matrix H. Normally,
only a small number of covariance functions are needed,
and this number is always less than or equal to the number
of nonzero elements in the measurement matrix. When the
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at s, fi: Figure 6. Time evolution of the mean square errors. Note the stronger growth of error amplitudes in the approximative
robability stochastic approach ASDP and also the similarity between the Monte Carlo forecasts with different sizes on the

However, ensembles.
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product PHT is calculated, the gain K can be found by

- solving a sequence of linear systems.

Updating the error statistics

The next issue concerns the update of the statistical en-
semble to correct the error statistics after an analysis with
measurements. Thus, after an analysis the ensemble variance
should be correctly reduced at the measurement locations and
also have the correct covariances.

Consider a scalar state described by a model forecast wi
and a measurement z at a time ¢;. The model forecast and
the measurements contain errors u‘j{ and Z; and therefore
give only an approximate estimate of the state. The estimates
wh, wi, and zy are related to the true state wj, through the
expressions

10,155

Pf
wh =i+ g (e - wh), (39)
where Pf = (wf)? and R, = (%)? are the error variance
of the forecast and the measurement, respectively. See, for
example, Ghil [1989] for an introduction to linear estimation
theory.
The error covariance for the analyzed estimate becomes

P2 = (,Lﬁa)Z - (wa iy wt)z

Pt i
= (w‘ + W{Z b wf) . w‘)

SE L e W
= (wf -+ m(z - wf))

wl = wi, + @k, (36)
W = wl, + @, 37) e
zr = wh, + Zk, (38) - P+ R
where the expectations zb_fc ='w_§ =% =0. P 4 e 3 =4 (40)
. The analyzed estimate is given by Pf+ R P+ R
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where the time indices have been dropped. In the Kalman taken from the initial stream function in case ASDP at fo the referens
filter one assumes the measurement errors to be uncorrelated ~ different grid points are used to update a zero stream fu The assi
with the forecast errors ! = 0. The analyzed error covari- tion once. There is no dynamical evolution in this case. T results fror
ance matrix can then be calculated from the remaining terms, ~ Kalman gains for the four measurements are shown in Fig: from the e
which-for the vector case becomes ure 8, calculated both by using the ensemble statistics with extended K
ensemble sizes of 100 and 500 and by using the analytically rather simil
P*=( - KH)P'. (41) prescribed covariance functions that are initially used in th See Table 1
extended Kalman filter. As expected, these Kalman gains from the e
The derivation (40) also shows through the second line that rather similar for the three cases. The analyzed central fol forecast so
the analyzed error covariance matrix can be calculated by  cast, mean, and variance fields are shown in Figure 9. T One cot
operating directly on the ensemble itself. Thus, by calculat-  conclusions thus far are that the Monte Carlo method p forecast are
ing the Kalman gain and then updating all the members in  vides realistic error forecasts and that the outlined procedurt tical data a
the ensemble using (34), the resulting ensemble will have the ~ for generating analyzed fields gives promising results. whether or
same error covariances as one would get from (41), which is the ensemt
used in the standard Kalman filter. Data Assimilation Experiment should be v
The error covariance matrix is defined as the variance very low vz
and covariance about the true state,.which unfortunately is The previous sections have discussed the fundamental th the ensemt
unknown. One thcfeforc has to decide whether one should ory required for applying the Monte Carlo method and variance re
calculate the covariances ab(?ut the- ens.cmbl_e mean or the  gomble statistics as an alternative to solving the error cov case the me
cer}tral forecast. The two ghc'nces will give sl¥ghtl)_/ different ..o equation in the extended Kalman filter. The central fore W%nle the ¢
estimates for the error statistics, and the quality will depend ¢t stream function from the evolution experiments sho Will provid
on which is the best estimate of the true state. At this stage Figure 4 in the time interval ¢ € [0,60] is now used U lutions in 1

the ensemble mean has been used.

Example

Now a simple example will be used to compare the Kalman
gains, analyzed means and central forecast, and error vari-
ance fields as calculated from the Kalman filter and the
method based on ensemble statistics. Four measurements

Might be p
have a non
ance,

generate measurements in four grid points in the upper layel
every At = 2.0. These measurements are then used in
assimilation experiment in which the initial stream functt

has been set to zero all over the domain. The initial varianc This exp
field is shown in, for example, Figure 5 and is set to 0.2518 Upp(_ar layes
the interior of the domain and to zero at the closed bound: Vertical pre
aries where the stream function is assumed to be known. FO $ained 5o |
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the error covariance functions, the horizontal decorrelation
tengthis 7, = 2.0, and the factor for the vertical correlation is
¢~0% (see the appendix). The simulated measurements are
assumed to have a variance of 0.02 to reduce their influence,
although they are generated without noise. The ensemble is
forced by a system noise with variance 0.0001, which is the
same as was used in case MCS100n. For a case with real
dynamics with the QG model set up in a realistic domain,
the system noise should certainly be higher, but in this twin
expetiment, where the QG model has been used to generate
the data, such a low value might account for numerical trun-
cation errors. Here an ensemble size of 500 has been used,
although results from the previous examples suggest that an
ensemble size of 100 would be sufficient. For this case on
such a small domain, only a few minutes are required on a
CRAY Y-MP.

The results from the single data assimilation experiment
are shown in Figure 10 for the upper layer solution and in
Figure 11 for the lower layer solution. The time evolution
for the reference stream function is shown in the leftmost
column, and the results from the assimilation procedure for
the central forecast and the mean are shown in the second and
third columns. Both the central forecast and the mean are
converging toward the reference solution, and it is not easy
to visually determine which gives the estimate closest to the
reference case. Att = 30, both the main structures and their
amplitudes are quite well regenerated, both for the central
forecast and the mean. Examining the numbers in Table 1,
shows that for the upper layer, the solution for the central
forecast is slightly better than the mean, while for the lower
layer, the mean gives a better fit than the central forecast to
the reference case.

The assimilation procedure performs very well, and the
results from this example are significantly better than those
from the experiments of Evensen [1992] in which the full
extended Kalman filter was used. However, the results are
rather similar to the simplified case 2A from Evensen [1992].
See Table 1 also for a comparison of the errors in the solution
from the extended Kalman filter and the mean and central
forecast solutions resulting from the Monte Carlo method.

One could probably say that the mean and the central
forecast are about equally good in this experiment. In prac-

tical data assimilation applications, though, it is not obvious

whether one should use the central forecast or the mean of
the ensemble as the “best” estimate. Intuitively, the mean
should be used if the ensemble has converged (reflected by a
very low variance in the ensemble). A problem might be that
the ensemble is converging in data-dense regions while the
variance remains quite large in data-sparse regions. In that
case the mean could be used in the regions with low variance,
while the central forecast and each of the ensemble members
will provide equally bad but at least physically acceptable so-
lutions in the regions with high variance. However, the mean

. Might be physically unacceptable if the ensemble members

have a nonnormal distribution in the regions with high vari-
ance,

1 This experiment, in which data are assimilated only in the

- Upper layer in a two-layer model, also raises the question of

Ye¥tical projection of surface information. The experience
Bained so far, based on applications with the Kalman filter
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by Evensen [1992, 1993] and the Monte Carlo approach
in this paper, suggests that the dynamical evolution of the
error statistics also provides the correct vertical influence
functions, and that data in the upper layer will be sufficient
to reconstruct the barotropic and the first baroclinic modes.
This in an important issue for assimilation of altimeter data
in models for large-scale ocean circulation, and the results
support the use of advanced data assimilation methods for
handling the vertical projection problem.

In the error variance fields (fourth column in Figures 10
and 11), it is seen how the error variance estimates are re-
duced faster in the upper layer because of the assimilation
of data than in the lower layer, where the data have less in-
fluence. By studying the variance plots in detail, one can
also observe the advection of error variance in the back-
ground velocity field, for example, the high amplitude near
the right boundary in the lower layer at ¢ = 10-30, which
is moved toward the lower boundary. The evolution of the
mean square errors for this experiment is shown in Figure 12.
It is again seen how the errors in layer one are lower than
those in layer two. The time evolution is similar to what one
would expect from previous examples with the Kalman filter
for linear models. Of course, here the slight increase in er-
rors between assimilation times is a result of both the system
noise and the dynamical error growth. Note also that the too
strong error growth from the data assimilation experiments
of Evensen [1992] is absent. From the curves in Figure 12 it
is expected that the errors would continue to decrease slightly
if the assimilation process was continued for longer time.

It is interesting to see the similarities between the estimated
error variance fields and the calculated residuals (rightmost
columns in Figures 10 and 11), especially in the lower layer
for t = 20, 30, and 40, that is, highest variance in regions
with largest residuals. The residuals are defined as reference
case minus central forecast assimilation case. From the low
variance and residuals at the final time ¢ = 60, it is clear that
the assimilation process is converging. This was expected
with such good data coverage.

Discussion

A new sequential data assimilation algorithm has been
outlined and discussed. It has been illustrated how instead of
solving the error covariance equation which is used in the ex-
tended Kalman filter, one can solve the “full” Kolmogorov’s
equation, which is the exact equation describing the evolution
of the error statistics using Monte Carlo methods. An en-
semble of probable initial states is generated with a specified
mean, variance, and covariance. By integrating the ensem-
ble forward in time and by properly updating the ensemble
when data are available, all the error statistics required in the
extended Kalman filter can be calculated directly from the
ensemble.

Evensen [1992] reported a serious closure problem for
the approximate stochastic evolution equation, and Evensen
[1993] also discussed the problem of posing consistent open
boundary conditions for the approximate stochastic evolution
equation. The method outlined here resolves both of these
problems. By solving the full Kolmogorov’s equation, no
approximate closure schemes need be used, and as long as
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Figure 10. The reference stream function is shown in the Jeft column. The next two columns contain the central and
mean forecasts for the stream functions that result from the assimilation process. The contour interval is 0.2 for all the
stream function plots. The two rightmost columns contain the variance plots and the residual defined by the reference
stream function minus the central forecast generated by the assimilation process.
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Figure 11. Same as Figure 10 but for the lower layer.

the boundary conditions are well posed for the ocean model, is, it stores the covariance functions for all the state variables
[ : fhlS will normally also be true for each of the ensemble in every grid point, even though only the covariance func-
Members. tions referenced by the measurement matrix are required.
_"'*The standard Kalman filter has several major drawbacks. One would also expect the covariances to approach zero at
ltearries a huge amount of information forward in time; that  a certain distance. This expectation has motivated attempts
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Figure 12. Time evolution of the mean square errors for the data assimilation experiment using Monte Carlo methods
to forecast error statistics. Both the evolution of the total mean square errors for the upper and lower layers (middle
curve) and the mean square errors for each of the individual layers are shown.

by several scientists (including the author of this paper) to
store only a banded covariance matrix for reducing the com-
putational load. The results so far seem not to be especially
useful, mainly because any numerical approximation used
for the error covariance evolution equation results in unstable
numerical algorithms owing to loss of positive definiteness.

Some authors have tried to simplify the dynamical equa-
tions for the error statistics: for example, Dee [1991]
projected the error statistics on the slow manifold, and
Cohn [1993] derived an approximate system of partial dif-
ferential equations which described the qualitative behavior
of the error covariance evolution.

The approach presented in this paper resolves several of the
main issues concerning applications of the extended Kalman
filter with a nonlinear quasi-geostrophic (QG) model. The
next stage would be to test the method with realistic primitive
equation models.

Besides the points mentioned above, the method also has a
significantly lower computational load. Only the ensemble,
which has a size of, say, 100n where n is the number of
state variables in the ocean model, needs to be stored. Note

Table 1. Error Estimates

- Appendix

Maximum Error MSE
Upper layer case 2A 0.15 0.0019
Lower layer case 2A 0.15 0.0033
Upper layer central 0.12 0.0010
Lower layer central 0.13 0.0028
Upper layer mean 0.17 0.0022
Lower layer mean 0.11 0.0013

The true errors in the estimated stream functions at ¢ = 60.
Case 2A results are from a similar experiment by Evensen [1992],
in which the extended Kalman filter was used with simplified error
covariance evolution. Central and mean refer to the central forecast
and mean forecast in the data assimilation experiment. MSE is
mean square error. Note that there are some small differences in
parameters between case 2A and the current experiment so case 2A
is not exactly comparable to the current experiment.

that storage increases linearly with n in contrast to the stan-
dard Kalman filter, for which storage is proportional to n%,
The required CPU corresponds to O(100) model forecasts if
O(100) members are used in the ensemble, in contrast to n
model forecasts in the extended Kalman filter. The method

is very simple to implement, it should be feasible for full
primitive equation models on existing computers, and it also.
provides better results than the traditional extended Kalman
filter. The proposed method is also well suited for paralle]
computers on which each member of the ensemble could be

integrated independently by a single processor.

Generating Pseudo Random Fields

A method for generating two-dimensional pseudo rando;
fields ¢ = ¢(z,y) with a specific mean, variance, and ¢
variance is illustrated. A continuous field ¢ = g(z,y) can
described by its Fourier transform |

aleii= [_ [_ dkqlk) ekX.

By using a grid with dimensions N and M and defining
k = (1, Ap), the expression above can be written as

>
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“where ¢1.p € [0,1] is a random number that introduces a
random phase shift. The exponential function means that
the frequency spectrum is decreasing exponentially with in-
creasing wave number. The formula for the pseudo random

fields is then

o~ (KIH+X3) [0 2midn p il miZn+Aptm)

(A4)

, c
Ak
Z vV Ak
..To ensure that the pseudo random fields are real, the con-

i Q\(K'!) )‘p) = (’1\(57,‘_, A*p)*

or, equivalently, ¢_; _, = —dy, must be satisfied. In addi-
tion we must have Im (o, Aog) = 0.

'The formula (A4) can be used to generate an ensemble of
pseudo random fields with a specific covariance determined
-By=thc choice of parameters ¢ and o. The covariance of the
ensemble is

(A5)
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The fields should be é-correlated in wave space, so that

= q(z,u) q(z2, 1) =
ZAkcze—2("&3+)\i)/02.6061‘%:(951*$2)+/\p(y1—y2)}_ (A8)
% Lp

The variance in a location (z, y) is

g(z,9) a(z,y) = Ak F Y e 2R (A9)
Lp

- By requiring that the variance be equal to 1 in (A9) and
using the condition g(0) g(r3) = e~ in (A8), one can solve
for the two unknowns ¢ and o. If one applies the isotropy
imposed when assuming é-correlated fields, this reduces to
solving, for example,

1= Ak Y e 2R/,

Lp

(A10)

el = Akc22e'2(”%+)‘i)f“2 cos (KiTh)- (A11)
Lp

for ¢ and ¢. Note that ¢ can be eliminated, and the prob-

- lem reduces to a nonlinear scalar equation for o, which

fan be solved using a numerical algorithm. Here a routine,

' .f‘gmm/zeroin.f” from Netlib, which contains a modified im-
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plementation of the algorithm “zero” given by Brent [1973]
is used.

This generates an ensemble of pseudo random fields with a
variance of 1 and covariance determined by the decorrelation
length 75, used in the isotropic covariance function

R 72
q(0) g(r) = exp (——2) :

Th
An extremely efficient method for generating pseudo ran-
dom fields is provided by using two-dimensional fast Fourier
transform routines. It would not be practical to use formula
(A4) directly for larger computational grids and realistic ap-
plications. To avoid using doubly periodic fields, the inverse
FFT is calculated on a grid which is a few characteristic
lengths larger than the computational domain. The subdo-
main corresponding to the computational domain will then

have nonperiodic fields.

(A12)

Imposing Vertical Correlation

In the QG model there will always be a specific verti-
cal correlation between the stream functions in the different
layers. Such a correlation should also be contained in the
ensemble of initial states and system noise fields. Using the
procedure outlined above, one generates horizontal pseudo
random fields with variance equal to 1 and with zero correla-
tion between the layers. Given a set of pseudo random fields
¢i(z,y,2) and gi(x,y, z2) for the upper and lower layers
in the two-layer model that has been used here, a new set
q'(z,y,21) and q}(z,y, z2) with a specific covariance o be-
tween the layers can be generated by the linear combination

q!(wsyz 2'1) =V 1 - qu(ﬁ!:, y:zl) + aQ(mﬂ Y, ZZ) (A13)

qr(.’L’,y,Zg) ZQ(SU,y,Zz). (A14)

Such equations are also easy to derive for a higher number
of layers by assuming linear combinations between the new
and old fields in the different layers and then using the con-
ditions of specified variances in and covariances between the
different layers.
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