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Data assimilation concepts and methods
Mar ch 1999

By F. Bouttier and P. Courtier

Abstract

Thesetraining courselecturenotesarean advancedandcomprehensive presentationof mostdataassimilationmethodsthat
areconsidereduseful in appliedmeteorologyandoceanography today. Someareconsideredold-fashionedbut they arestill
valuablefor low costapplications.Othershave never beenimplementedyet in realisticapplications,but they areregardedas
thefutureof dataassimilation.A mathematicalapproachhasbeenchosen,which allows a compactandrigorouspresentation
of the algorithms, though only some basic mathematical competence is required from the reader.

This document has been put together with the help of previous lecture notes, which are now superseded:
• Variational analysis: use of observations, example of clear radiances, Jean Pailleux, 1989.
• Inversion methods for satellite sounding data, J. Eyre, 1991. (part 2 only)
• Methods of data assimilation: optimum interpolation, P. Undén, 1993. (except section 5)
• Data assimilation methods: introduction to statistical estimation, J. Eyre and P. Courtier, 1994.
• Variational methods, P. Courtier, 1995. (except sections 3.2-3.6, 4.5, 4.6)
• Kalman filtering, F, Bouttier, 1997. (except the predictability parts)

Traditionallythelecturenoteshavebeenreferringa lot to theassimilationandforecastsystematECMWF, ratherthanto more
generalalgorithms.Sometimesideasthathadnot evenbeentestedfoundtheir way into thetrainingcourselecturenotes.New
notes had to be written every couple of years, with inconsistent notation.

In thisnew presentationit hasbeendecidedto stick to adescriptionof themainassimilationmethodsusedworldwide,without
any referenceto ECMWFspecificfeatures,andclearcomparisonsbetweenthedifferentalgorithms.Thisshouldmake it easier
to adaptthemethodsto problemsoutsidetheglobalweatherforecastingframework of ECMWF, e.g.oceandataassimilation,
landsurfaceanalysisor inversionof remote-sensingdata.It is hopedthat thereaderwill manageto seethephysicalnatureof
the algorithms beyond the mathematical equations.

A first editionof theselecturenoteswasreleasedin March1998.In this secondedition,somefigureswereadded,anda few
errors were corrected.

Thanksaredueto J.Pailleux,J.Eyre,P. UndénandA. Hollingsworth for their contribution to thepreviouslecturenotes,to A.
Lorenc,R. Daley, M. Ghil andO. Talagrandfor teachingthe variousforms of the statisticalinterpolationtechniqueto the
meteorologicalworld, to D. Richardsonfor proof-readingthe document,andto the attendeesof training coursewho kindly
provided constructive comments.
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1. BASIC CONCEPTS OF DATA ASSIMILATION

Analysis.An analysisis theproductionof anaccurateimageof thetruestateof theatmosphereat a giventime,

representedin amodelasacollectionof numbers.An analysiscanbeusefulin itself asacomprehensiveandself-

consistentdiagnosticof theatmosphere.It canalsobeusedasinputdatato anotheroperation,notablyastheinitial

statefor a numericalweatherforecast,or asa dataretrieval to beusedasa pseudo-observation.It canprovide a

reference against which to check the quality of observations.

Thebasicobjectiveinformationthatcanbeusedto producetheanalysisis acollectionof observedvaluesprovided

by observationsof thetruestate.If themodelstateis overdeterminedby theobservations,thentheanalysisreduces

to an interpolationproblem.In mostcasestheanalysisproblemis under-determined1 becausedatais sparseand

only indirectly relatedto themodelvariables.In orderto make it a well-posedproblemit is necessaryto rely on

somebackground informationin the form of ana priori estimateof themodelstate.Physical constraintson the

analysisproblemcanalsohelp.Thebackgroundinformationcanbea climatologyor a trivial state;it canalsobe

generatedfrom theoutputof apreviousanalysis,usingsomeassumptionsof consistency in timeof themodelstate,

like stationarity(hypothesisof persistence)or theevolution predictedby a forecastmodel.In a well-behavedsys-

tem,oneexpectsthatthis allows theinformationto beaccumulatedin time into themodelstate,andto propagate

to all variables of the model. This is the concept of data assimilation.

1.  although it can be overdetermined locally in data-dense areas
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Figure  1. Representation of four basic strategies for data assimilation, as a function of time. The way the time

distributionof observations(“obs”) is processedto produceatimesequenceof assimilatedstates(thelowercurve

in each panel) can be sequential and/or continuous.

Assimilation. Dataassimilationis ananalysistechniquein whichtheobservedinformationis accumulatedinto the

model state by taking advantage of consistency constraints with laws of time evolution and physical properties.

Therearetwo basicapproachesto dataassimilation:sequentialassimilation,thatonly considersobservationmade

in thepastuntil the time of analysis,which is thecaseof real-timeassimilationsystems,andnon-sequential, or

retrospectiveassimilation,whereobservationfrom thefuturecanbeused,for instancein areanalysisexercise.An-

sequential, intermittent assimilation:

sequential, continuous assimilation:

non-sequential, intermittent assimilation:�

non-sequential, continuous assimilation:�

obs � obs � obs � obs � obs � obs �

obs � obs � obs � obs � obs � obs �

obs � obs � obs � obs � obs � obs �

obs � obs � obs � obs � obs � obs �

analysis� analysis� analysis�model� model� model�

analysis+model�   analysis+model�   analysis+model�   

analysis+model�   
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otherdistinctioncanmadebetweenmethodsthatareintermittent or continuousin time.In anintermittentmethod,

observationscanbeprocessedin smallbatches,which is usuallytechnicallyconvenient.In a continuousmethod,

observationbatchesover longerperiodsareconsidered,andthecorrectionto theanalysedstateis smoothin time,

which is physicallymorerealistic.Thefour basictypesof assimilationaredepictedschematicallyin Fig. 1 . Com-

promises between these approaches are possible.

Figure 2. A summarizedhistoryof themaindataassimilationalgorithmsusedin meteorologyandoceanography,

roughlyclassifiedaccordingto their complexity (andcost)of implementation,andtheirapplicabilityto real-time

problems. Currently, the most commonly used for operational applications are OI, 3D-Var and 4D-Var.

Many assimilationtechniqueshave beendevelopedfor meteorologyandoceanography (Fig. 2 ). They differ in

their numericalcost,their optimality, andin their suitability for real-timedataassimilation.Most of themareex-

plained in this volume.

ref: Daley 1991;Lorenc 1986;Ghil 1989

1.1  On the choice of model

Theconceptsdevelopedhereareillustratedby examplesin theECMWFglobalmeteorologicalmodel,but they can

be(andthey havebeen)appliedequallywell to limited areamodels,mesoscalemodels,oceancirculationmodels,

wave models,two-dimensionalmodelsof seasurfacetemperatureor landsurfaceproperties,or one-dimensional

verticalcolumnmodelsof theatmospherefor satellitedataretrieval, for example.Thispresentationcouldbemade

in thegeneralframework of aninfinite-dimensionalmodel(i.e. without discretization)with a continuoustime di-

mension.This would involve somesophisticatedmathematicaltools.For thesake of simplicity, only thediscrete,

finite-dimensional problem will be addressed here.

co
m

pl
ex

ity

real time assimilation� retrospective analysis

intermittent 4D-Var long  4D-Var or 4D-PSAS4D-PSAS
�

Kalman smoother

fixed-lag Kalman smoother

3D-Var   or 3D-PSAS

Optimal Interpolation (OI)
�

Cressman
�

Successive Corrections
nudging

Interpolation of observations

EKF

(4D-Var or) 4D-PSAS with model error

       non-linear methods

or�
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In meteorologythereareoftenseveralequivalentwaysof representingthemodelstate.Thefieldsthemselvescan

berepresentedasgrid-pointvalues(i.e.averagesof thefieldsinsidegrid boxes),spectralcomponents,EOFvalues,

finite-elementdecomposition,for instance,which canbeprojectionson differentbasisvectorsof thesamestate.

Thewind canberepresentedascomponents , vorticity anddivergence , or streamfunctionandveloc-

ity potential , with asuitabledefinitionof theintegrationconstants.Thehumiditycanberepresentedasspe-

cific or relative humidity or dew-point temperature,as long astemperatureis known. In the vertical, underthe

assumptionof hydrostaticbalance,thicknessesor geopotentialheightscanberegardedasequivalentto theknowl-

edgeof temperatureandsurfacepressure.All thesetransformsdonotchangetheanalysisproblem,only its repre-

sentation2. This may sound trivial, but it is important to realize that the analysiscan be carried out in a

representationthatisnotthesameastheforecastmodel,aslongasthetransformsareinvertible.Thepracticalprob-

lemsof findingtheanalysis,e.g.themodellingof errorstatistics,canbegreatlysimplifiedif theright representation

is chosen.

Sincethemodelhasa lower resolutionthanreality, eventhebestpossibleanalysiswill never becompletelyreal-

istic. In thepresentationof analysisalgorithmswe will sometimesrefer to the true stateof themodel.This is a

phraseto refer to the bestpossiblestaterepresentedby the model,which is what we aretrying to approximate.

Henceit is clearthat,evenif theobservationsdo not have any instrumentalerror, andtheanalysisis equalto the

truestate,therewill besomeunavoidablediscrepanciesbetweentheobservedvaluesandtheir equivalentsin the

analysis,becauseof representativenesserrors. Althoughwewill oftentreattheseerrorsasapartof theobservation

errors in themathematicalequationsbelow, oneshouldkeepin mindthatthey dependonthemodeldiscretization,

not on instrumental problems.

1.2  Cressman analysis and related methods

Onemayliketo designtheanalysisprocedureasanalgorithmin whichthemodelstateis setequalto theobserved

valuesin thevicinity of availableobservations,andto anarbitrarystate(say, climatologyor a previousforecast)

otherwise.Thisformedthebasisof theold Cressmananalysisscheme(Fig.3 ) whichis still widely usedfor simple

assimilation systems.

Themodelstateis assumedto beunivariateandrepresentedasgrid-pointvalues.If we denoteby a previous

estimateof themodelstate(background) providedby climatology, persistenceor apreviousforecast,andby ,

a setof observationsof thesameparameter, a simplekind of Cressmananalysisis providedby

the model state  defined at each grid point	  according to the following update equation:

where is a measureof the distancebetweenpoints and . is the backgroundstateinterpolatedto

point . The weight function equalsone if the grid point is collocatedwith observation . It is a

2.  At ECMWF, the analysis problem is currently formulated in terms of the spectral components of vorticity, divergence, temperature, grid-
point values of specific humidity, on surfaces defined by the hybrid coordinate, and logarithm of surface pressure, just like in the forecast
model. In winter 1998 the model state dimension was about 6.106.
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decreasingfunction of distancewhich is zero if , where
�

is a user-definedconstant(the “influence

radius”) beyond which the observations have no weight.

Figure 3.An exampleof Cressmananalysisof aone-dimensionalfield.Thebackgroundfield is representedas

thebluefunction,andtheobservationsin green.Theanalysis(blackcurve) is producedby interpolatingbetween

the background (grey curve) and the observed value, in the vicinity of each observation; the closer the

observation, the larger its weight.

Therearemany variantsof theCressmanmethod.Onecanredefinetheweightfunction,e.g.as .

A moregeneralalgorithmis thesuccessivecorrectionmethod(SCM)3. Oneof its featuresis thattheweightscan

belessthanonefor , which meansthata weightedaveragebetweenthebackgroundandtheobservationis

performed.Anotheroneis that theupdatescanbeperformedseveral times,eitherasseveral iterationsat a single

time in orderto enhancethesmoothnessof corrections,or asseveralcorrectionsdistributedin time.With enough

sophisticationthesuccessivecorrectionmethodcanbeasgoodasany otherassimilationmethod,however thereis

no direct method for specifying the optimal weights.

ref: Daley 1991

1.3  The need for a statistical approach

The Cressman method is not satisfactory in practice for the following reasons:

• if wehaveapreliminaryestimateof theanalysiswith agoodquality, wedonotwantto replaceit by

values provided from poor quality observations.

• whengoingaway from anobservation,it is not clearhow to relaxtheanalysistowardthearbitrary

state, i.e. how to decide on the shape of the function.

• ananalysisshouldrespectsomebasicknown propertiesof the truesystem,like smoothnessof the

fields, or relationshipbetweenthe variables(e.g. hydrostaticbalance,or saturationconstraints).

This is not guaranteedby the Cressmanmethod: random observation errors could generate

unphysical features in the analysis.

Becauseof its simplicity, theCressmanmethodcanbea usefulstartingtool. But it is impossibleto getrid of the

3.   In the recent literature this name is often replaced byobservation nudging which is more or less the same thing. Themodel nudging is a
model forcing technique in which the model state is relaxed toward another predefined state.

� � �
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aboveproblemsandto produceagood-qualityanalysiswithoutabettermethod.Theingredientsof agoodanalysis

are actually well known by anyone who has experience with manual analysis:

1) oneshouldstart from a good-qualityfirst guess,i.e. a previous analysisor forecastthat givesan

overview of the situation,

2) if observationsaredense,thenoneassumesthatthetruthprobablyliesneartheiraverage.Onemust

makeacompromisebetweenthefirst guessandtheobservedvalues.Theanalysisshouldbeclosest

to the data we trust most, whereas suspicious data will be given little weight.

3) the analysisshouldbe smooth,becausewe know that the true field is. Whengoing away from an

observation,theanalysiswill relaxsmoothlyto thefirst guesson scalesknown to betypical of the

usual physical phenomena.

4) the analysisshouldalsotry to respectthe known physical featuresof the system.Of course,it is

possiblein exceptionalcasesthatunusualscalesandimbalanceshappen,anda goodanalystmust

be able to recognize this, because exceptional cases are usually important too.

Looselyspeaking,thedatathatcango into theanalysissystemcomprisestheobservations,thefirst guessandthe

known physicalpropertiesof thesystem.Oneseesthatthemostimportantfeatureto representin theanalysissys-

temis thefactthatall piecesof dataareimportantsourcesof information,but at thesametimewedonot trustany

of themcompletely, sowe mustmake compromiseswhennecessary. Thereareerrorsin themodelandin theob-

servations,sowe cannever besurewhich oneto trust.However we canlook for a strategy thatminimizeson av-

erage the difference between the analysis and the truth.

To designanalgorithmthatdoesthis automatically, it is necessaryto representmathematicallytheuncertaintyof

thedata.Thisuncertaintycanbemeasuredby calibrating(or by assuming)theirerrorstatistics,andmodelledusing

probabilisticconcepts.Thentheanalysisalgorithmcanbedesignedonaformalrequirementthatin theaveragethe

analysiserrorsmustbeminimal in asensethatis meaningfulto theuser. Thiswill allow usto write theanalysisas

an optimization problem.

ref: Lorenc 1986

2. THE STATE VECTOR , CONTROL SPACE AND OBSERVATIONS

2.1  State vector

Thefirst stepin themathematicalformalisationof theanalysisproblemis thedefinitionof thework space.As in

a forecastmodel,thecollectionof numbersneededto representtheatmosphericstateof themodelis collectedas

acolumnmatrixcalledthestatevectorx. How thevectorcomponentsrelateto therealstatedependon thechoice

of discretization, which is mathematically equivalent to a choice of basis.

As explainedearlier, onemustdistinguishbetweenreality itself (which is morecomplex thanwhatcanberepre-

sentedasastatevector)andthebestpossiblerepresentationof realityasastatevector, whichweshalldenote ,

thetruestateatthetimeof theanalysis.Anotherimportantvalueof thestatevectoris , theapriori orbackground

estimateof thetruestatebeforetheanalysisis carriedout,valid at thesametime4. Finally, theanalysisis denoted

, which is what we are looking for.

4.  It is sometimes called thefirst guess, but the recommended word isbackground, for reasons explained later.

xt

xb

xa
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2.2  Control variable

In practiceit is oftenconvenientnot to solve theanalysisproblemfor all componentsof themodelstate.Perhaps

we do not know how to performa consistentanalysisof all components5, or we have to reducetheresolutionor

domainof analysisbecauseof insufficient computerpower. This is difficult to avoid astheresolutionandsophis-

ticationof forecastmodelstendto beashigh asthecomputingpower allows, i.e. too high for theanalysiswhich

ismoreexpensivebecausetheobservationshavetobeprocessedontopof themanagementof themodelstateitself.

In thesecasesthework spaceof theanalysisis not themodelspace,but thespaceallowedfor thecorrectionsto the

background,calledcontrol variablespace. Thentheanalysisproblemis to find acorrection (or analysisincre-

ment) such that

is ascloseaspossibleto . Formally theanalysisproblemcanbepresentedexactly likebeforeby asimpletrans-

lation: instead of looking for , we look for  in a suitable subspace6.

2.3  Observations

For a givenanalysiswe usea numberof observedvalues.They aregatheredinto anobservationvector . To use

themin theanalysisprocedureit is necessaryto beableto comparethemwith thestatevector. It would beniceif

eachdegreeof freedomwereobserveddirectly, so couldberegardedasaparticularvalueof thestatevector. In

practicetherearefewerobservationsthanvariablesin themodelandthey areirregularlydisposed,sothattheonly

correctway to compareobservationswith thestatevectoris throughtheuseof a functionfrom modelstatespace

to observationspacecalledanobservationoperator7 thatwewill denoteby . Thisoperatorgeneratesthevalues

thattheobservationswould take if boththey andthestatevectorwereperfect,in theabsenceof any mod-

elling error8. In practice is acollectionof interpolationoperatorsfrom themodeldiscretizationto theobserva-

tion points,andconversionsfrom modelvariablesto theobservedparameters.For eachscalarobservationthereis

acorrespondingline of . Thenumberof observations,i.e. thedimensionof vector andthenumberof linesin

, is varyingif theobservingnetwork is notexactlyperiodicin time.Thereareusuallymany fewerobservations

than variables in the model.

2.4  Departures

Thekey to dataanalysisis theuseof thediscrepanciesbetweenobservationsandstatevector. Accordingto the

previous paragraph, this is given by the vector of departures at the observation points:

Whencalculatedwith the background it is called innovations, andwith the analysis , analysisresiduals.

Their study provides important information about the quality of the assimilation procedure.

5.  This is often the case with surface or cloud-related variables, or the boundary conditions in limited-area models.

6.  Mathematically speaking, we constrain to belong to the affine manifold spanned by  plus the control variable vector subspace.

7.  also calledforward operator

8.  the values  are also calledmodel equivalents of the observations.
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3. THE MODELLING OF ERRORS

To representthefactthatthereis someuncertaintyin thebackground,theobservationsandin theanalysiswewill

assumesomemodelof theerrorsbetweenthesevectorsandtheir truecounterparts.Thecorrectway to do this is

to assumesomeprobability densityfunction, or pdf, for eachkind of error. Thereis a sophisticatedandrigorous

mathematicaltheoryof probabilitiesto whichthereadermayrefer. For themorepracticalmindswepresentasim-

plified (andmathematicallyloose)explanationof pdfs in theparagraphbelow, usingtheexampleof background

errors.

3.1  Using pdfs to represent uncertainty

Givenabackgroundfield justbeforedoingananalysis,thereis oneandonly onevectorof errorsthatseparates

it from the true state:

If wewereableto repeateachanalysisexperimenta largenumberof times,underexactly thesameconditions,but

with differentrealizationsof errorsgeneratedby unknown causes, wouldbedifferenteachtime.Wecancalcu-

latestatisticssuchasaverages,variancesandhistogramsof frequenciesof . In thelimit of a very largenumber

of realizations,weexpectthestatisticsto convergeto valueswhichdependonly on thephysicalprocessesrespon-

siblefor theerrors,not on any particularrealizationof theseerrors.Whenwe do anotheranalysisunderthesame

conditions,we do not expectto know whatwill be theerror , but at leastwe will know its statistics.Thebest

informationaboutthedistributionof is givenby thelimit of thehistogramwhentheclassesareinfinitely small,

which is a scalarfunctionof integral 1 calledtheprobability densityfunctionof . Fromthis functiononecan

derive all statistics,includingtheaverage(or expectation) andthevariances9. A popularmodelof scalarpdf is

the Gaussian function, which can be generalized to a multivariate pdf.

3.2  Error variables

The errors in the background and in the observations10 are modelled as follows:

• background errors: , of average andcovariances . They

aretheestimationerrorsof thebackgroundstate,i.e. thedifferencebetweenthebackgroundstate

vector and its true value. They do not include discretization errors.

• observation errors: , of average and covariances .

They containerrorsin the observation process(instrumentalerrors,becausethe reportedvalueis

notaperfectimageof reality),errorsin thedesignof theoperator , andrepresentativenesserrors

i.e. discretization errors which prevent  from being a perfect image of the true state11.

• analysiserrors: , of average . A measure of theseerrorsis given by the

trace of the analysis error covariance matrix ,

9.  Mathematically speaking, a pdf may not have an average or variances, but in the usual geophysical problems all pdfs do, and we will
assume this throughout this presentation.

10. Onecouldmodelforecasterrorsandbalancepropertiesin asimilarway, althoughthis is outsidethescopeof thisdiscussion.Seethesec-
tion on the Kalman filter.

11. An exampleis sharptemperatureinversionsin thevertical.They canbefairly well observedusingaradiosonde,but it is impossibleto rep-
resentthempreciselywith thecurrentverticalresolutionof atmosphericmodels.On theotherhand,temperaturesoundingsobtainedfrom sat-
ellite cannot themselves observe sharp inversions.
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.

They are the estimation errors of the analysis state, which is what we want to minimize.

Theaveragesof errorsarecalledbiasesandthey arethesignof a systematicproblemin theassimilatingsystem:

a model drift, or a bias in the observations, or a systematic error in the way they are used.

It is importantto understandthealgebraicnatureof thestatistics.Biasesarevectorsof thesamekind asthemodel

stateor observationvectors,sotheir interpretationis straightforward.Lineartransformsthatareappliedto model

state or observation vectors (such as spectral transforms) can be applied to bias vectors.

3.3  Using error covariances

Error covariancesaremoresubtleandwe will illustratethis with thebackgrounderrors(all remarksapplyto ob-

servationerrorstoo).In ascalarsystem,thebackgrounderrorcovarianceis simplythevariance,i.e. theroot-mean-

square (orr.m.s., orquadratic) average of departures from the mean:

In a multidimensionalsystem,the covariancesare a squaresymmetricmatrix. If the model statevector has

dimension , thenthecovariancesarean matrix.Thediagonalof thematrix containvariances12, for each

variableof themodel;theoff-diagonaltermsarecross-covariancesbetweeneachpair of variablesof themodel.

Thematrix is positive13. Unlesssomevariancesarezero,whichhappensonly in theratherspecialcasewhereone

believessomefeaturesareperfectin thebackground,theerrorcovariancematrix is positive definite.For instance

if the modelstateis tri-dimensional,andthe backgrounderrors(minus their average)aredenoted ,

then

The off-diagonal terms can be transformed into error correlations (if the corresponding variances are non zero):

Finally, linear transformationsof the modelstatevectorcanonly be appliedto covariancesasfull matrix trans-

forms.In particular, it is notpossibleto directly transformthefieldsof variancesor standarddeviations.If onede-

finesa lineartransformationby a matrix (i.e. a matrix whoselinesarethecoordinatesof thenew basisvectors

in termsof theold ones,sothatthenew coordinatesof thetransformof are ), thenthecovariancematrix in

terms of the new variables is .

12.  The square roots of variances are calledstandard deviations, or standard errors.

13.  This does not mean that all the matrix elements are positive; the definition of a positive definite matrix is given inAppendix A. The posi-
tivenesscanbeprovenby remarkingthattheeigenvaluesof thematrixarethevariancesin thedirectionof theeigenvectors,andthusareposi-
tive.
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3.4  Estimating statistics in practice

Theerrorstatistics(biasesandcovariances)arefunctionsof thephysicalprocessesgoverningthemeteorological

situationandtheobservingnetwork. They alsodependon our a priori knowledge of theerrors.Error variancesin

particularreflectouruncertaintyin featuresof thebackgroundor theobservations.In general,theonly way to es-

timatestatisticsis to assumethatthey arestationaryoveraperiodof timeanduniformoveradomain14 sothatone

cantake a numberof error realizationsandmake empiricalstatistics.This is in a sensea climatologyof errors.

Anotherempiricalway to specifyerrorstatisticsis to take themto bea fractionof theclimatologicalstatisticsof

the fields themselves.

Whensettingupanassimilationsystemin practice,suchapproximationsareunavoidablebecauseit is verydifficult

to gatheraccuratedatato calibratestatistics:estimationerrorscannotbeobserveddirectly. Someusefulinforma-

tion ontheaveragevaluesof thestatisticscanbegatheredfrom diagnosticsof anexistingdataassimilationsystem

usingtheobservationalmethod(seeits descriptionbelow) andtheNMC method(useof forecastdifferencesas

surrogatesto short-rangeforecasterrors).Moredetailed,flow-dependentforecasterrorcovariancescanbeestimat-

eddirectly from aKalmanfilter (describedbelow), althoughthisalgorithmraisesotherproblems.Finally, meteor-

ologicalcommonsensecanbeusedto specifyerrorstatistics,to theextentthatthey reflectourapriori knowledge

of the physical processes responsible for the errors15.

ref: Hollingsworthet al. 1986;Parrish and Derber 1992

4. STATISTICAL INTERPOLATION WITH LEAST-SQUARES ESTIMATION

In thissectionwepresentthefundamentalequationfor linearanalysisin ageneralalgebraicform: theleastsquares

estimation, alsocalledBestLinear UnbiasedEstimator(BLUE). Thefollowing sectionswill provide moreexpla-

nationsandillustrations,andweshallseehow theleast-squaresestimationcanbesimplifiedto yield themostcom-

mon algorithms used nowadays in meteorology and oceanography.

4.1  Notation and hypotheses

The dimension of the model state is and the dimension of the observation vector is . We will denote:

 true model state (dimension)

 background model state (dimension)

 analysis model state (dimension)

 vector of observations (dimension )

 observation operator (from dimension to )

 covariance matrix of the background errors  (dimension )

 covariance matrix of observation errors  (dimension )

 covariance matrix of the analysis errors  (dimension )

The following hypotheses are assumed:

• Linearized observationoperator: thevariationsof theobservationoperatorin thevicinity of the

backgroundstatearelinear:for any closeenoughto , where

is a linear operator.

14.   It is called an assumption ofergodicity.

15.  It is obvious that e.g. forecast errors in a tropical meteorological assimilation shall be increased in the vicinity of reported tropical
cyclones, for instance, or that observation operators for satellite radiances have more errors in cloudy areas.
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• Non-trivial errors :  and  are positive definite matrices.

• Unbiased errors: the expectation of the background and observation errors is zero i.e.

• Uncorrelated errors: observation and background errors are mutually uncorrelated i.e.

• Linear analysis: we look for an analysisdefinedby correctionsto the backgroundwhich depend

linearly on background observation departures.

• Optimal analysis: we look for ananalysisstatewhich is ascloseaspossibleto thetruestatein an

r.m.s. sense (i.e. it is a minimum variance estimate).

ref: Daley 1991;Lorenc 1986;Ghil 1989

4.2  Theorem: least-squares analysis equations

Proof:

With a translationof by , we canassumethat so theobservationoperatoris linear for our purposes.The
equation(A1) is simplyamathematicalexpressionof thefactthatwewanttheanalysisto dependlinearlyontheobservation
departures.Theexpressionof in (A2) is well-definedbecause is a positive definitematrix,and is positive.

(a) The optimal least-squares estimator, or BLUE analysis, is defined by the

following interpolation equations:

(A1)

(A2)

where the linear operator  is called thegain, orweight matrix, of the analysis.

(a) Theanalysis error covariance matrix is, for any :

(A3)

If  is the optimal least-squares gain, the expression becomes

(A4)

(a) The BLUE analysis is equivalently obtainedas a solution to the variational

optimization problem:

(A5)

where is calledthecostfunctionof theanalysis(or misfit, or penaltyfunction),

 is thebackground term,  is theobservation term.

(a) The analysis  is optimal: it is closest in an r.m.s. sense to the true state.

(b) If the backgroundand observation error pdfs are Gaussian,then is also the

maximum likelihood estimator of .
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Theminimizationproblem(A5) is well-definedbecause is aconvex functionand is astrictly convex function(it is
a quadratic form).
Theequivalencebetweenitems(a) and(c) of thetheoremstemsfrom therequirementthat thegradientof is zeroat the
optimum :

The identity with(A2) is straightforward to prove (all inverse matrices considered are positive definite):

hence

The expressions(A3) and(A4) for areobtainedby rewriting the analysisequation(A1) in termsof the background,
analysis and observation errors:

By developing the expressionof and taking its expectation,by linearity of the expectationoperatoronefinds the
generalexpression(A3) (rememberthat and beinguncorrelated,their cross-covarianceis zero).The simplerform
(A4) is easy to derive by substituting the expression for the optimal  and simplifying the terms that cancel.

Finally to prove (A2) itself we take the analysiserror covariancematrix given by (A3) andwe minimize its trace,i.e. the
total error variance: (note that  and )

This is acontinuousdifferentiablescalarfunctionof thecoefficientsof , sowecanexpressits derivative asthefirst-
order terms in  of the difference ,  being an arbitrary test matrix:

Thelastline shows thatthederivative is zerofor any choiceof if andonly if , which
is equivalent to
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because  is assumed to be invertible.

In thecaseof Gaussianpdfs,onecanmodelthebackground,observationandanalysispdfsasfollows,respectively:

( ,  and  are normalization factors.)

whichyieldstheright averagesandcovariancesfor thebackgroundandobservationserrors,andtheanalysiserror

pdf is simply definedastheBayesianproductof the two known sourcesof information,thebackgroundandthe

observationpdfs(this canbederivedrigorouslyby usingBayes’theoremto write asa conditionalprobability

of giventheobservationsandtheapriori pdf of thebackground).Then,by takingminusthelogarithmof ,

onefindsthatthemodelstatewith themaximumprobability(or likelihood) is theonethatminimizesthecostfunc-

tion  expressed in the theorem.

4.3  Comments

Thehypothesesof non-triviality canalwaysbeenmadein well-posedanalysisproblems:if is non-positive,one

canrestrictthe control spaceto the orthogonalof the kernelof (the analysiswill not make any correctionto

backgroundvariablesthatareperfectlyknown). If is notasurjection,thensomeobservationsareredundantand

theobservingnetwork shallberestrictedto theimageof . If is non-positive, theexpression(A2) for still

holds(thentheanalysiswill beequalto theobservedvalueat theobservationpoints ), but thevariational

versionof theleast-squaresanalysiscannotbeused.It is evenpossible(with somealgebraicprecautions)to have

someinfinite eigenvaluesin , i.e.anon-positive , whichmeansthatsomeobservationsarenotusedbecause

their errors are infinite.

Thehypothesisof unbiasederrors is adifficult onein practicebecausethereoftenaresignificantbiasesin theback-

groundfields(causedby biasesin theforecastmodel)andin theobservations(or in theobservationoperators).If

thebiasesareknown, they canbesubtractedfrom thebackgroundandobservationvalues,andtheabove algebra

appliesto thedebiasedquantities.If thebiasesareleft in, theanalysiswill notbeoptimal,eventhoughit will seem

to reducethebiasesby interpolatingbetweenthebackgroundandobservations.It is importantto monitorthebiases

in anassimilationsystem,e.g.by lookingataveragesof backgrounddepartures,but it is not trivial to decidewhich

partof thesearemodelor observationbiases.Theproblemof biasmonitoringandremoval is thesubjectof ongoing

research.

Thehypothesisof uncorrelatederrors is usuallyjustifiedbecausethecausesof errorsin thebackgroundandin the

observationsaresupposedto becompletelyindependent.However, onemustbecarefulaboutobservationpreproc-

essingpractices(suchassatelliteretrieval procedures)thatusethebackgroundfield in awaythatbiasestheobser-

vationstowardthebackground.It might reducetheapparentbackgrounddepartures,but it will causetheanalysis

to be suboptimal (too close to the background, a condition nicknamed as theincest problem).

Thetangent linear hypothesis is not trivial and it is commented in the next section.

It is possibleto rewrite theleast-squaresanalysisequationsin termsof theinversesof theerrorcovariancematrices,

calledinformationmatrices.It makesthealgebraa bit morecomplicated,but it allows oneto seeclearly that the

informationcontainedin theanalysisis thesum,in asimplesense,of theobservationsprovidedby thebackground

and by the observations. This is illustrated in the section on the estimation of analysis quality below.

HBHT R+( )

�  !

"
b x( ) =

� 1
2
--- x xb–( )TB 1– x xb–( )exp

"
o x( ) =

 1
2
--- y

�
x[ ]–( )TR 1– y

�
xb[ ]–( )exp

"
a x( ) =

"
b x( ) "

o x( )

"
a

x
"

a x( )

� x( )

B
B

H
H R K�

xa( )

R R 1–



Data assimilation concepts and methods

16 Meteorological Training Course Lecture Series (Printed  9  January  2001)

It will be shown in the sectionon dual algorithms(PSASanalysis)that the equations,andin particularthe cost

function , canbe rewritten in thespaceof theobservations . Also, it is easyto that least-squaresanalysisis

closely related to a linear regression between model state and observations.

4.4  On the tangent linear hypothesis

Thehypothesisof linearizedobservationoperator is neededin orderto derivea rigorousalgebraicexpressionfor

theoptimal . In practice, maynot belinear, but it usuallymakesphysicalsenseto linearizeit in thevicinity

of the background state:

Then, beinga continuousfunctionof , theleast-squaresequationsfor theanalysisshouldintuitively yield a

nearly optimal .

Moregenerally, thetangentlinear hypothesison canbewrittenasthefirst-orderTaylor–Youngformulain the

vicinity of an arbitrary state  and for a perturbation :

,

with . This hypothesis,called the tangent linear hypothesisis only acceptableif the

higher-order variations of can be neglected (in particular there should be no discontinuities) for all

perturbationsof themodelstatewhichhave thesameorderof magnitudeasthebackgrounderrors. Theoperator

is calledthedifferential,or firstderivative, or tangentlinear (TL)16 functionof atpoint . Althoughthis is

a desirable mathematical property of, it is not enough for practical purposes, because the approximation

mustbesatisfactory, in user-definedterms,for finite valuesof thatdependon theapplicationconsidered.In the

least-squares analysis problem, we need

for all valuesof thatwill beencounteredin theanalysisprocedure,notably , , andalsoall trial

valuesusedin theminimizationof if a variationalanalysisis performed17. Thustheimportantrequirement

is thatthedifferencebetween and shouldbemuchsmallerthanthetypicalobservation

errors (definedby ), for all model stateperturbations of size and structureconsistentwith typical

background errors, and also with the amplitude of the analysis increments .

Thustheproblemof linearizing is not just relatedto theobservationerrorsthemselves.It mustbeappreciated

in termsof theerrorsin thebackground too,whichin asequentialassimilationsystemarethepreviousforecast

errors,which dependon theforecastrangeandthequality of themodel.Ultimately thecorrectnessof thelineari-

zationmustbeappreciatedin thecontext of thefully integratedassimilationsystem.It will beeasierto applythe

16. Bothqualifierstangentandlinear areneeded:obviously couldbelinearwithoutsatisfyingtheTaylor formula.A functioncanalsobe
tangentto anotherwithoutbeinglinear, if thedifferencebetweenthemis an , e.g. and aretangentto eachotherfor .

17. Qualitatively speakingthey all belongto aneighbourhoodof having ashapeandsizewhich is consistentwith the and errorcov-
ariances.

� y

K
�

�
x( )

�
xb( ) H x xb–( )≈–

K H
xa �

x #
�

x #+( )
�

x( ) H # O # 2( )+ +=

l im$ 0→ O # 2( ) # 2– 0=�

H
�

x

H
O % 2( ) & 2 & 3 & 0=

�
�

x #+( )
�

x( ) H #≈–

#

y
�

x( ) y H x xb–( )–
�

xb( )+≈–

x x xa= x xt=

� x( )

xb B R

�
x( )

�
xb( )– H x xb–( )

R x xb–

xa xb–
�

xb



March 1999

Meteorological Training Course Lecture Series (Printed  9  January  2001) 17

linearizationto agoodsystembecausethedepartures will besmaller. Conversely, thelinearizationmaybe

inapplicableto difficult dataassimilationproblems.Thisis oftenthecasewith oceanmodelsor satellitedata,which

meansthatit canbewrongto usesophisticatedanalysisalgorithmsthatrely toomuchonthelinearityof theprob-

lem.

Thelinearizationproblemcanbeevenmoreacutefor thelinearizationof themodelforecastoperator which is

neededin 4D-Var andin theKalmanfilter describedbelow. As with thelinearizationof , it mayor maynot be

licit dependingon the quality of all componentsof the assimilationsystem:datacoverage,observation quality,

modelresolutionandphysics,andforecastrange.Theuserrequirementsandthephysicalpropertiesof thesystem

must be considered.

The non-linear analysis problem

Theassumptionof linearanalysisis astrongone.Linearalgebrais neededto derivetheoptimalanalysisequations.

Onecanrely on the linearizationof a weaklynon-linearobservation operator, at the expenseof optimality. The

incrementalmethod(describedbelow for thevariationalanalysis)performsthisprocedureiteratively in anempir-

ical attemptto make theanalysismoreoptimal.For stronglynon-linearproblems,thereis no generalandsimple

wayto calculatetheoptimalanalysis.Thesimulatedannealingmethodcanbeuseful;specificmethods,suchasthe

simplex, dealwith variableswith boundeddefinitiondomains.Finally, it is sometimespossibleto makeaproblem

morelinearsimplybyacleverdefinitionof modelandobservationvariables(seethesectiononminimizationmeth-

ods).

4.5  The point of view of conditional probabilities

It is interestingto formalizetheanalysisproblemusingtheconditional,or Bayesian,probabilities.Let usdenote

theapriori pdf (probabilitydensityfunction)of themodelstatebeforetheobservationsareconsidered,i.e.

thebackgroundpdf.Letusdenote thepdfof theobservations.Theaimof theanalysisis tofind themaximum

of , theconditionalprobabilityof themodelstategiventheobservations.Thejoint pdfof and (i.e. the

probability that  and  occur together) is

i.e. it is theprobabilitythat occurswhen occurs,andvice versa.Theabove expressionis theBayestheorem.

In theanalysisprocedurewe know thata measurementhasbeenmadeandwe know its value , so

and we obtain

which meansthat the analysispdf is equalto the backgroundpdf timesthe observation pdf . The latter

peaks at  but it is not a Dirac distribution because the observations are not error-free.

Thevirtue of theprobabilisticderivationof theanalysisproblemis that it canbeextendedto non-Gaussianprob-

abilities(althoughthisspoilstheequivalencewith the(A2) equationfor ). A practicalapplicationis donein the

framework of variationalqualitycontrol,whereit is assumedthatobservationerrorsarenotGaussianbut they con-

tain someamountof “grosserrors”,i.e. thereis a probabilitythattheerroris not generatedby theusualGaussian

physicalprocessesbut by somemoreseriousproblem,like codingor instrumentalfailure.Thegrosserrorsmight

bemodelledusinga uniform pdf over a predefinedinterval of admissiblegrosserrors,leadingto a non-Gaussian

observationpdf. Whentheoppositeof thelogarithmof this pdf is taken,theresultingobservationcostfunctionis

notquadratic,but giveslessweightto theobservation(i.e.thereis lessslope)for modelstatesthatdisagreestrongly

with the observed value.
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ref: Lorenc 1986

4.6  Numerical cost of least-squares analysis

In currentoperationalmeteorologicalmodels,thedimensionof themodelstate(or, moreprecisely, of thecontrol

variablespace) is of theorderof , andthedimensionof theobservationvector(thenumberof observed

scalars)is of theorderof peranalysis18. Thereforetheanalysisproblemis mathematicallyunderdeter-

mined(althoughin someregionsit might beoverdeterminedif thedensityof theobservationsis larger thanthe

resolutionof themodel).In any practicalapplicationit is essentialto keepin mind thesizeof thematrixoperators

involvedin computingtheanalysis(Fig. 4 ). Theleast-squaresanalysismethodrequiresin principlethespecifica-

tion of covariancematrices and (or their inversesin thevariationalform of thealgorithm)whichrespectively

containof theorderof and distinctcoefficients,which arestatisticsto estimate(theestimationof a

varianceor covariancestatisticconvergeslike thesquarerootof thenumberof realizations).Theexplicit determi-

nationof requirestheinversionof amatrixof size , whichhasanasymptoticcomplexity of theorderof

. The exact minimizationof the cost function requires,in principle, evaluationsof the cost

functionandits gradient,assuming isquadraticandtherearenonumericalerrors(e.g.usingaconjugategradient

method).

18. At ECMWFin winter1998thecontrolvariabledimensionwas512000,thenumberof activeobservations(per6-hourinterval) wasabout
150000
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Figure  4. Sketches of the shapes of the matrices and vector dimensions involved in an usual analysis problem

where there are many fewer observations than degrees of freedom in the model: from top to bottom, in the

equations of the linear analysis, the computation of, of the  term, and the computation of the cost

function .

It is obviousthat,exceptin analysisproblemsof very smalldimension(like one-dimensionalretrievals),it is im-

possibleto computeexactly theleast-squaresanalysis.Someapproximationsarenecessary, they arethesubjectof

the following sections.

4.7  Conclusion

We have seen that there are two main ways of defining the statistical analysis problem:

• either assumethat the backgroundand error covariancesare known, and derive the analysis

equations by requiring that the total analysis error variances are minimum,

• or assumethat the backgroundand observation error pdfs are Gaussian,and derive the analysis

equations by looking for the state with the maximum probability.

Both approaches lead to two mathematically equivalent algorithms:

• the direct determination of the analysis gain matrix ,

• the minimization of a quadratic cost function.

Thesealgorithmshaveverydifferentnumericalproperties,andtheirequivalencestopsassoonassomeunderlying

hypotheses are not verified, like the linearization of the observation operator, for instance.
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5. A SIMPLE SCALAR ILLUSTRATION OF LEAST-SQUARES ESTIMATION

Let us assume that we need to estimate the temperature of a room.

Wehaveathermometerof known accuracy (thestandarddeviationof measurementerror)andweobserve ,

which is consideredto have expectation (i.e. we assumethattheobservationis unbiased)andvariance . In

theabsenceof any otherinformationthebestestimatewecanprovideof thetemperatureis , with accuracy .

However we may have someadditionalinformationaboutthe temperatureof the room.We may have a reading

from another, independentthermometer, perhapswith a differentaccuracy. We may noticethat everyonein the

roomis wearinga jumper—anothertimely pieceof informationfrom which we canderive anestimate,although

with aratherlargeassociatederror. Wemayhaveanaccurateobservationfrom anearlierdate,whichcanbetreated

asanestimatefor thecurrenttime,with anerrorsuitablyinflatedto accountfor theseparationin time.Any of these

observationscouldbe treatedasa priori or backgroundinformation,to beusedwith in estimatingtheroom

temperature.Let ourbackgroundestimatebe , of expectation (i.e. it is unbiased)andof accuracy . Intu-

itively and canbecombinedto provideabetterestimate(or analysis) of thanany of thesetakenalone.

We are going to look for a linear weighted average of the form:

whichcanberewrittenas , i.e.we look for acorrectionto thebackgroundwhich is a linear

function of the difference between the observation and the background.

The error variance of the estimate is:

wherewehaveassumedthattheobservationandbackgrounderrorsareuncorrelated.Wechoosetheoptimalvalue

of  that minimizes the analysis error variance:

which is equivalent to minimizing (Fig. 5)
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Figure 5. Schematicrepresentationof thevariationalform of theleast-squaresanalysis,in ascalarsystemwhere

the observation  is in the same space as the model: the cost-function terms  and  are both convex and

tendto “pull” theanalysistowardsthebackground andtheobservation , respectively. Theminimumof their

sum is somewhere between  and , and is the optimal least-squares analysis.

• In thelimiting caseof avery low qualitymeasurement( ), andtheanalysisremains

equal to the background.

• On theotherhand,if theobservationhasa very high quality ( ), andtheanalysisis

equal to the observation.

• If bothhave thesameaccuracy, , andtheanalysisis simply theaverageof

and , which reflectsthe fact that we trust asmuch the observation as the background,so we

make a compromise.

• In all cases, , which meansthattheanalysisis a weightedaverageof thebackgroundand

the observation.

These situations are sketched inFig. 6.
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Figure 6. Schematicrepresentationof thevariationsof theestimationerror , andof theoptimalweight that

determines the analysis , for various relative amplitudes of the background and observation standard errors

( ).

It is interesting to look at the variance of analysis error for the optimal:

or

which shows that the analysiserror varianceis alwayssmallerthanboth the backgroundandobservation error

variances,andit is smallestif bothareequal,in whichcasetheanalysiserrorvarianceis half thebackgrounderror

variance.
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A correctspecificationof observationandbackgrounderrorcovariancesis crucial to thequality of theanalysis,
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sentialparametersarethevariances,but thecorrelationsarealsovery importantbecausethey specifyhow theob-

servedinformationwill besmoothedin modelspaceif thereis amismatchbetweentheresolutionof themodeland

thedensityof theobservations.In the framework of Kalmanfiltering and4D assimilationwith modelasa weak

constraint,athird kind of covariancesto specifyis , themodelerrorcovariances(seetherelevantsectionbelow).

6.1  Observation error variances

They aremainlyspecifiedaccordingto theknowledgeof instrumentalcharacteristics,whichcanbeestimatedusing

collocatedobservations,for instance.As explainedbefore,they shouldalsoincludethevarianceof representative-

nesserrorswhich is not negligible whenanalysingphenomenawhich cannotbewell representedin modelspace.

It is wrongto leave observationbiasesasa contribution to theobservationerrorvariancesbecauseit will produce

biasesin theanalysisincrements;wheneverobservationbiasescanbeidentified,they shouldberemovedfrom the

observedvalueor from thebackgroundfields,dependingonwhetheronethinksthey arecausedby problemsin the

model or in the observation procedure (unfortunately we do not always know what to decide).

6.2  Observation error correlations

They areoftenassumedto bezero,i.e.onebelievesthatdistinctmeasurementsareaffectedbyphysicallyindepend-

enterrors.This soundsreasonablefor pairsof observationscarriedout by distinct instruments.This maynot be

truefor setsof observationsperformedby thesameplatform,like radiosonde,aircraftor satellitemeasurements,

or whenseveralsuccessive reportsfrom thesamestationareusedin 4D-Var. Intuitively therewill beasignificant

observationerrorcorrelationfor reportscloseto oneanother. If thereis a biasit will show up asa permanentob-

servation error correlation.The observation preprocessingcangenerateartificial correlationsbetweenthe trans-

formedobservationse.g.whentemperatureprofilesareconvertedto geopotential,or whenthereis a conversion

betweenrelative andspecifichumidity (correlationwith temperature),or whena retrieval procedureis appliedto

satellitedata.If thebackgroundis usedin theobservationpreprocessing,this will introduceartificial correlations

betweenobservationsandbackgrounderrorswhich aredifficult to accountfor: moving theobservationcloserto

thebackgroundmaymaketheobservationandbackgrounderrorslook smaller, but it will unrealisticallyreducethe

weightof theoriginally observedinformation.Finally, representativenesserrorsarecorrelatedby nature:interpo-

lationerrorsarecorrelatedwheneverobservationsaredensecomparedto theresolutionof themodel.Errorsin the

designof theobservationoperator, like forecastmodelerrorsin 4D-Var, arecorrelatedon thesamescalesasthe

modelling problems.

Thepresenceof (positive)observationerrorcorrelationscanbeshown to reducetheweightgivento theaverageof

theobservations,andthusgivemorerelative importanceto differencesbetweenobservedvalues,likegradientsor

tendencies.Unfortunatelyobservationerrorcorrelationsaredifficult to estimateandcancreateproblemsin thenu-

mericsof theanalysisandquality controlalgorithms.In practiceit oftenmakessenseto try to minimizethemby

working on a biascorrectionscheme,by avoiding unnecessaryobservationpreprocessing,by thinningdensedata

andby improving thedesignof themodelandobservationoperators.Mostmodelsof covariancesusedin prac-

tice are diagonal or almost.

6.3  Background error variances

They areusuallyestimatesof theerrorvariancesin theforecastusedto produce . In theKalmanfilter they are

estimatedautomaticallyusingthetangent-linearmodel,so they do not needto bespecified(althoughthis means

thattheproblemis movedto thespecificationof themodelerror andthetuningof approximatedalgorithmsthat

arelesscostly thanthecompleteKalmanfilter). A crudeestimatecanbeobtainedby takinganarbitraryfraction

of climatologicalvarianceof thefieldsthemselves.If theanalysisis of goodquality (i.e. if therearea lot of obser-

vations)abetteraverageestimateisprovidedby thevarianceof thedifferencesbetweentheforecastandaverifying
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analysis.If theobservationscanbeassumedto beuncorrelated,muchbetteraveragedbackgrounderrorvariances

canbeobtainedby usingtheobservationalmethodexplainedbelow. However, in asystemlike theatmospherethe

actualbackgrounderrorsareexpectedto dependa lot on theweathersituation,andideally thebackgrounderrors

shouldbeflow-dependent.This canbeachievedby theKalmanfilter, by 4D-Var to someextent,or by someem-

pirical laws of errorgrowth basedon physicalgrounds.If backgrounderrorvariancesarebadlyspecified,it will

leadto too largeor toosmallanalysisincrements.In least-squaresanalysisalgorithms,only therelativemagnitude

of thebackgroundandobservationerrorvariancesis important.However, theabsolutevaluesmaybeimportantif

they areusedto make quality-controldecisionson theobservations(it is usuallydesirableto acceptmoreeasily

the observations with a large background departure if the background error is likely to be large).

6.4  Background error correlations

They are essential for several reasons:

Information spreading. In data-sparseareas,the shapeof the analysisincrementis completely

determinedby the covariancestructures(for a singleobservation it is given by ). Hencethe

correlationsin will perform the spatialspreadingof information from the observation points

(real observations are usually local) to a finite domain surrounding it.

Information smoothing. In data-denseareas,one can show that in the presenceof discrete

observations(which is the usualcase)the amountof smoothing19 of the observed information is

governedby thecorrelationsin , which canbeunderstoodby remarkingthattheleftmosttermin

is . Thesmoothingof theincrementsis importantin ensuringthattheanalysiscontainsscales

which are statistically compatiblewith the smoothnesspropertiesof the physical fields. For

instance,when analysingstratosphericor anticyclonic air masses,it is desirableto smooththe

incrementsa lot in the horizontal in order to averageand spreadefficiently the measurements.

When doing a low-level analysisin frontal, coastalor mountainousareas,or near temperature

inversions,it is desirableonthecontraryto limit theextentof theincrementssoasnot to producean

unphysically smoothanalysis.This has to be reflectedin the specificationof backgrounderror

correlations.

Balance properties. There are often more degreesof freedomin a model than in reality. For

instance,thelarge-scaleatmosphereis usuallyhydrostatic.It is almostgeostrophic,at leastthereis

always a large amount of geostrophy in the extratropics. Thesebalance propertiescould be

regardedas annoying constraintson the analysisproblem,and enforcedbrutally e.g. using an a

posteriorinormal-modeinitialization.On theotherhand,they arestatisticalpropertiesthat link the

differentmodelvariables.In otherwords, they show up ascorrelationsin the backgrounderrors

becausethe existenceof a balancein the reality andin the modelstatewill imply that thereis a

(linearized)versionof the balancethat exists in the backgrounderror covariances,too. This is

interestingfor the useof observed information:observingonemodelvariableyields information

aboutall variablesthatarebalancedwith it, e.g.a low-level wind observationallows oneto correct

thesurfacepressurefield by assumingsomeamountof geostrophy. Whencombinedwith thespatial

smoothingof incrementsthis canleadto a considerableimpacton thequality of theanalysis,e.g.a

temperatureobservation at one point can be smoothedto producea correctionto geopotential

heightaroundit, andthenproduceacompletethree-dimensionalcorrectionof thegeostrophicwind

field (Fig. 7 ). The relative amplitudeof the incrementsin termsof the variousmodelfields will

19.  There is an equivalence between statistical analysis and the theory of interpolation by splines.
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dependdirectly on thespecifiedamountof correlationaswell ason theassumederrorvariancein

all the concerned parameters.

Figure  7. Example of horizontal structure functions commonly used in meteorology: the horizontal

autocorrelationof height(or pressure)hasanisotropic,gaussian-likeshapeasafunctionof distance(right panel).

In turn,geostrophy impliesthatwind will becross-correlatedwith heightatdistanceswherethegradientof height

correlation is maximum. Hence, an isolated height observation will generate an isotropic height “bump” with a

rotating wind increment in the shape of a ring.

Ill-conditioning of the assimilation. It is possibleto include into the control variablessome

additional parameterswhich are not directly observed, like model tuning parametersor bias

estimates.This can be an efficient indirect parameterestimationtechniqueif thereis a realistic

couplingwith the observed data,usually throughthe designof the observation operatoror of the

model(in a4-D assimilation).It maynotbepossibleor sensibleto specifyexplicit correlationswith

the restof the modelstatein . However, onemustbe careful to specifya sensiblebackground

error for all parametersof the control variable, unlessit is certain that the problem is over-

determinedby theobservations.A toosmallerrorvariancewill obviouslypreventany correctionto

the additional parameters.A too large variancemay on the other hand make the additional

parametersactlikeasinkof noise,exhibiting variationswhenever it improvesthefit of theanalysis

to observations,evenif no suchcorrectionof theadditionalparametersis physically justified.This

cancreategenuineproblemsbecausesomeimplicit analysiscouplingis often createdby variable

dependenciesin the observation operatorsor in the model(in 4D-Var). Then,the specificationof

backgrounderrorsfor additionalparameterswill have animpacton theanalysisof themainmodel

state. They should reflect the acceptable amplitude of the analysis corrections.
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Flow-dependentstructure functions. If enoughis known aboutthedynamicsof theproblem,one

canmake dependon theuncertaintyof thepreviousanalysisandforecast,not only in termsof

backgrounderrorvariances,but alsoin thecorrelations.In geophysicalfluids thereis not justa loss

of predictabilityduringtheforecast,therearewavesthatfollow specificpatterns,andthesepatterns

areexpectedto be found in thebackgrounderrors.For instance,in anareaproneto cyclogenesis,

oneexpectsthemostlikely backgrounderrorsto have theshape(or structure function) of themost

unstablestructures,perhapswith a baroclinicwave tilt, andanticorrelationsbetweenthe errorsin

the warm and in the cold air masses.This is equivalent to a balanceproperty, and again if the

relevantinformationcanbeembeddedinto thecorrelationsof , thentheobservedinformationcan

be more accuratelyspreadspatially and distributed amongall model parametersinvolved. Such

information can be provided in the framework of a Kalman filter or 4D-Var.

ref: Courtieret al. 1998

6.5  Estimation of error covariances

It is adifficult problem,becausethey areneverobserveddirectly, they canonly beestimatedin astatisticalsense,

sothatoneis forcedto make someassumptionsof homogeneity. Thebestsourceof informationabouttheerrors

in anassimilationsystemis thestudyof thebackgrounddepartures( ) andthey canbeusedin avariety

of ways.Otherindicationscanbeobtainedfrom theanalysisdepartures,or from thevaluesof thecostfunctionsin

3D/4D-Var. Therearesomemoreempiricalmethodsbasedonthestudyof forecastsstartedfrom theanalyses,like

theNMC methodor theadjoint sensitivity studies,but their theoreticalfoundationis ratherunclearfor the time

being.A comprehensive andrigorousmethodologyis beingdevelopedundertheframework of adaptivefiltering

which is toocomplex to explain in thisvolume.Probablythemostsimpleyet reliableestimationmethodis theob-

servational method explained below.

Figure  8. Schematic representation the observational method. The (observation – background) covariance

statistics for a given assimilation system are stratified against distance, and the intercept at the origin of the

histogram provides an estimate of the average background and observation error variances for these particular

assimilation and observation systems.

The observational(or Hollingworth–Lonnberg) method.Thismethod20 reliesontheuseof backgrounddepar-

turesin anobservingnetwork that is denseandlargeenoughto provide informationon many scales,andthatcan

20. namedaftertheauthorsthatpopularizedit in meteorology, althoughit wasknown andusedbeforein geophysics.Thewidespreadkriging
method is closely related.
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beassumedto consistof uncorrelatedanddiscreteobservations.Theprinciple(illustratedin Fig. 8 ) is to calculate

anhistogram(or variogram) of backgrounddeparturecovariances,stratifiedagainstseparation(for instance).At

zeroseparationthehistogramprovidesaveragedinformationaboutthebackgroundandobservationerrors,atnon-

zeroseparationit givestheaveragedbackgrounderrorcorrelation:if and aretwo observationpoints,theback-

ground departure covariance  can be calculated empirically and it is equal to

If oneassumesthat thereis no correlationbetweenobservationandbackgrounderrors,the last two termson the

secondline vanish.The first term is the observation error covariancebetween and , the secondterm is the

backgrounderrorcovarianceinterpolatedat thesepoints,assumingbotharehomogeneousover thedatasetused.

In summary,

• if , , the sum of the observation and the background error variances,

• if and the observation errors are assumedto be uncorrelated, , the

backgrounderror covariancebetween and . (If thereare observation error correlations,it is

impossible to disentangle the information about and  without additional data)

• Under the sameassumption,if and are very closeto eachother without being equal,then

, so that by determiningthe interceptfor zeroseparationof , one

can determine .

• Then, one gets and the backgrounderror correlationsare given by

(we have assumedthat thebackgrounderrorvariancesarehomogeneousover the

considered dataset).

In mostsystemsthebackgrounderrorcovariancesshouldgo to zerofor very largeseparations.If this is not the

case,it is usuallythesignof biasesin thebackgroundand/orin theobservationsandthemethodmaynot work

correctly (Hollingsworth and Lonnberg 1986.).

6.6  Modelling of background correlations

As explainedabove thefull matrix is usuallytoo big to bespecifiedexplicitly. Thevariancesarejust then di-

agonaltermsof , which areusuallyspecifiedcompletely. Theoff-diagonaltermsaremoredifficult to specify.

They mustgeneratea symmetricpositive definitematrix, soonemustbecarefulabouttheassumptionsmadeto

specifythem.Additionally is oftenrequiredto havesomephysicalpropertieswhicharerequiredto bereflected

in the analysis:

• the correlations must be smooth in physical space, on sensible scales,

• thecorrelationsshouldgo to zerofor very largeseparationsif it is believedthatobservationsshould

only have a local effect on the increments,
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• the correlationsshould not exhibit physically unjustifiablevariationsaccordingto direction or

location,

• the most fundamental balance properties, like geostrophy, must be reasonably well enforced.

• the correlationsshould not lead to unreasonableeffective backgrounderror variancesfor any

parameterthat is observed, usedin the subsequentmodel forecast,or output to the usersas an

analysis product.

Thecomplexity andsubtletyof theserequirementsmeanthatthespecificationof backgrounderrorcovariancesis

a problemsimilar to physicalparametrization.Physically soundhypothesesneedto bemadeandtestedcarefully.

Some of the more popular techniques are listed below, but more sophisticated ones remain to be invented.

• Correlationmodelscanbespecifiedindependentlyfrom variancefields,undertheconditionthatthe

scalesof variationof thevariancesaremuchlargerthanthecorrelationscales,otherwisetheshape

of thecovarianceswould differ a lot from thecorrelations,with unpredictableconsequenceson the

balance properties.

• Vertical autocorrelationmatricesfor eachparameterare usually small enoughto be specified

explicitly.

• Horizontal autocorrelationscannot be specifiedexplicitly, but they can be reducedto sparse

matricesby assumingthat they arehomogeneousandisotropicto someextent.It implies that they

arediagonalin spectralspace21. In grid-pointspacesomelow-passdigital filters canbeappliedto

achieve a similar result.

• Three-dimensionalmultivariate correlation models can be built by carefully combining

separability, homogeneityand independencyhypotheseslike: zerocorrelationsin the vertical for

distinct spectralwavenumbers,homogeneityof the vertical correlationsin the horizontaland/or

horizontalcorrelationsin thevertical,propertyof thecorrelationsbeingproductsof horizontaland

verticalcorrelations.Numericallythey imply thatthecorrelationmatrix is sparsebecauseit is made

of block matrices which are themselves block-diagonal22

• Balanceconstraintscan be enforcedby transformingthe model variablesinto suitably defined

complementaryspacesof balancedand unbalancedvariables.The latter are supposedto have

smallerbackgrounderror variancesthanthe former, meaningthat they will contribute lessto the

increment structures.

• Thegeostrophicbalanceconstraintcanbeenforcedusingtheclassical -planeor -planebalance

equations, or projections onto subspaces spanned by so-called Rossby and Gravity normal modes.

• More generalkinds of balancepropertiescan be expressedusing linear regressionoperators

calibrated on actual background error fields, if no analytical formulation is available.

Two lastrequirementswhich canbeimportantfor thenumericalimplementationof theanalysisalgorithmarethe

availability of thesymmetricsquarerootof (amatrix suchthat ) andof its inverse.They cancon-

strain notably the design of .

ref: Courtieret al. 1998

7. OPTIMAL INTERPOLATION (OI) ANALYSIS

TheOI is analgebraicsimplificationof thecomputationof theweight in theanalysisequations(A1) and(A2).

21.   This is the Khinchine-Bochner theorem. The spectral coefficients are proportional to the spectral variance of the correlations for each
total wavenumber. This is detailed on the sphere in Courtieret al. (1996).

22.  It corresponds to the mathematical concept oftensor product.
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(A1)

(A2)

Theequation(A1) canberegardedasa list of scalaranalysisequations,onepermodelvariablein thevector .

For eachmodelvariabletheanalysisincrementis givenby thecorrespondingline of timesthevectorof back-

grounddepartures . Thefundamentalhypothesisin OI is: For each modelvariable, onlya few obser-

vations are important in determining the analysis increment. It is implemented as follows:

1) For eachmodelvariable , selecta smallnumber of observationsusingempiricalselection

criteria.

2) Form thecorrespondinglist of backgrounddepartures , the backgrounderror

covariancesbetween the model variable and the model state interpolated at the

observation points (i.e. the relevant coefficients of the -th line of ), and the

backgroundandobservationerrorcovariancesubmatricesformedby therestrictionsof and

 to the selected observations.

3) Invert the positivedefinitematrix formedby therestrictionof to theselected

observations (e.g. by anLU or Choleski method),

4) Multiply it by the -th line of  to get the necessary line of.

It is possibleto save somecomputertime on thematrix inversionby solvingdirectly a symmetricpositive linear

system,sinceweknow in advancethevectorof departuresto which theinversematrixwill beapplied.Also, if the

samesetof observationsis usedto analyseseveralmodelvariables,thenthesamematrix inverse(or factorization)

can be reused.

In the OI algorithmit is necessaryto have the backgrounderror covariances asa modelwhich caneasilybe

appliedto pairsof modelandobservedvariables,andto pairsof observedvariables.Thiscanbedifficult to imple-

mentif theobservationoperatorsarecomplex. On theotherhand,the matrixneedsnotbespecifiedglobally, it

canbespecifiedin anadhocwayfor eachmodelvariable,aslongasit remainslocally positivedefinite.Thespec-

ificationof usuallyreliesonthedesignof empiricalautocorrelationfunctions(e.g.Gaussianor Besselfunctions

and their derivatives), and on assumed amounts of balance constraints like hydrostatic balance or geostrophy.

The selectionof observationsshouldin principle provide all the observationswhich would have a significant

weightin theoptimalanalysis,i.e. thosewhich have significantbackgrounderrorcovariances with thevar-

iableconsidered.In practice,backgrounderrorcovariancesareassumedto besmall for largeseparation,so that

only theobservationsin a limited geometricaldomainaroundthemodelvariableneedto beselected.For compu-

tationalreasonsit maybedesirableto ensurethatonly a limited numberof observationsareselectedeachtime, in

orderto keepthematrix inversionscheap.Two commonstrategiesfor observationselectionarepointwiseselection

(Fig. 9) and box selection (Fig. 10)
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Figure  9. One OI data selection strategy is to assume that each analysis point is only sensitive to observations

locatedin asmallvicinity. Therefore,theobservationsusedto performtheanalysisat two neighbouringpoints

or maybedifferent,sothattheanalysisfield will generallynotbecontinuousin space.Thecostof theanalysis

increases with the size of the selection domains.

Figure  10. A slightly more sophisticated and more expensive OI data selection is to use, for all the points in an

analysisbox (blackrectangle),all observationslocatedin abiggerselectionbox (dashedrectangle),sothatmost

of the observations selected in two neighbouring analysis boxes are identical.

Theadvantageof OI is its simplicity of implementationandits relatively smallcostif theright assumptionscanbe

made on the observation selection.
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A drawbackof OI is that spuriousnoiseis producedin theanalysisfieldsbecausedifferentsetsof observations

(andpossiblydifferentbackgrounderrormodels)areusedon differentpartsof themodelstate.Also, it is impos-

sible to guarantee the coherence between small and large scales of the analysis (Lorenc 1981).

8. THREE-DIMENSIONAL VARIATIONAL ANALYSIS (3D-VAR)

Theprincipleof 3D-Var is to avoid thecomputation(A2) of thegain completelyby looking for theanalysisas

anapproximatesolutionto theequivalentminimizationproblemdefinedby thecostfunction in (A5). Thesolu-

tion is sought iteratively by performing several evaluations of the cost function

and of its gradient

in orderto approachtheminimumusingasuitabledescentalgorithm.Theapproximationlies in thefactthatonly

a smallnumberof iterationsareperformed.Theminimizationcanbestoppedby limiting artificially thenumber

of iterations,or by requiringthatthenormof thegradient decreasesby a predefinedamountduringthe

minimization,which is an intrinsic measureof how muchthe analysisis closerto the optimumthanthe initial

point of the minimization. The geometry of the minimization is suggested inFig. 11.

Figure 11.Schematicrepresentationof thevariationalcost-functionminimization(herein a two-variablemodel

space): the quadratic cost-function has the shape of a paraboloid, or bowl, with the minimum at the optimal

analysis . Theminimizationworksby performingseveralline-searchesto movethecontrolvariable to areas

where the cost-function is smaller, usually by looking at the local slope (the gradient) of the cost-function.
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In practice,the initial point of theminimization,or first guess, is takenequalto thebackground . This is not

compulsory, however, soit is importantto distinguishclearlybetweenthetermsbackground(which is usedin the

definitionof thecostfunction)andfirst guess(which is usedto initiate theminimizationprocedure).If themini-

mizationis satisfactory, theanalysiswill notdependsignificantlyon thechoiceof first guess,but it will alwaysbe

sensitive to the background.

A significantdifficulty with 3D-Var is theneedto designa modelfor thatproperlydefinesbackgrounderror

covariancesfor all pairsof modelvariables.In particular, it hasto besymmetricpositive definite,andtheback-

grounderrorvariancesmustberealisticwhenexpressedin termsof observationparameters,becausethis is what

will determine the weight of the observations in the analysis.

Thepopularityof 3D-Varstemsfrom its conceptualsimplicity andfrom theeasewith whichcomplex observation

operatorscanbeused,sinceonly theoperatorsandtheadjointsof their tangentlinearneedto beprovided23. Weak-

ly non-linearobservationoperatorscanbeused,with a small lossin theoptimality of theresult.As long as is

strictly convex, there is still one and only one analysis.

In mostcasestheobservationerrorcovariancematrix is block-diagonal,or evendiagonal,becausethereis no

reasonto assumeobservationerrorcorrelationsbetweenindependentobservingnetworks,observingplatformsor

stations,andinstruments,exceptin somespecialcases.It is easyto seethata block-diagonal impliesthat

is asumof scalarcost-functions , eachonedefinedby asubmatrix andthecorrespondingsubsets

and  of the observation operators and values:

Thegradient canbesimilarly decomposed.Thebreakdown of is ausefuldiagnostictool of thebehaviour

of 3D-Var in termsof eachobservationtype:themagnitudeof eachtermmeasuresthemisfit betweenthestate

andthecorrespondingsubsetof observations.It canalsosimplify thecodingof thecomputationsof andits

gradient24.

Anotheradvantageis theability to enforceexternalweak(or penalty) constraints,suchasbalanceproperties,by

puttingadditionaltermsinto thecostfunction(usuallydenoted ). However, this canmake thepreconditioning

of the minimization problem difficult.

ref: Parrish and Derber 1992,Courtieret al. 1998.

9. 1D-VAR AND OTHER VARIATIONAL ANALYSIS SYSTEMS

Theessenceof the3D-Var algorithmis to rewrite a least-squaresproblemastheminimizationof a cost-function.

Themethodwasintroducedin orderto remove thelocal dataselectionin theOI algorithm,therebyperforminga

globalanalysisof the3-D meteorologicalfields,hencethename.Of course,thetechniquehasbeenappliedequally

well to otherproblemsin whichthecontrolvariableis muchsmaller. A verysuccessfulexampleis thesatellitedata

23.  whereas OI requires a background error covariance model between each observed variable and each model variable.

24.  Actually the whole  can be decomposed into as many elementary cost functions as there are observed parameters, by redefining the
observation space to be the eigenvectors of .
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retrieval problem,in which the1D-Varalgorithmperformsa localanalysisof oneatmosphericcolumn(themodel

state)at thelocationof eachsatellitesoundingsuchasTOVS radiancesor microwavemeasurements.Similarvar-

iationaltechniqueshavebeenappliedto theretrieval of surfacewind fieldsfrom acollectionof scatterometeram-

biguouswind measurementsor to theanalysisof landsurfacepropertiesin a numericalweatherpredictionmodel

(in this casethecontrolvariableis moreor lessa columnof the3-D model,but thetime dimensionis takeninto

account as in 4D-Var). Except 1D-Var, these methods have no established name yet.

ref: Eyre 1987.

10. FOUR-DIMENSIONAL VARIATIONAL ASSIMILATION (4D-VAR)

4D-Var is a simplegeneralizationof 3D-Var for observationsthat aredistributedin time. The equationsarethe

same,providedtheobservationoperatorsaregeneralizedto includea forecastmodelthatwill allow acomparison

between the model state and the observations at the appropriate time.

Over a given time interval, theanalysisbeingat the initial time, andtheobservationsbeingdistributedamongn

timesin the interval, we denoteby thesubscript thequantitiesat any givenobservationtime . Hence, ,

and aretheobservations,themodelandthetruestatesat time , and is theerrorcovariancematrix for the

observationerrors . Theobservationoperator at time is linearizedas . Thebackgrounderror

covariance matrix  is only defined at initial time, the time of the backgroundand of the analysis .

10.1  The four-dimensional analysis problem

In its general form, it is defined as the minimization of the following cost function:

which can be proven, like in the three-dimensionalcasedetailedpreviously, to be equivalent to finding the

maximum likelihood estimate of the analysis subject to the hypothesis of Gaussian errors.

The 4D-Var analysis, or four-dimensional variational assimilation problem, is by conventiondefinedasthe

aboveminimizationproblemsubjectto thestrongconstraintthatthesequenceof modelstates mustbeasolution

of the model equations:

where is a predefinedmodel forecastoperatorfrom the initial time to . 4D-Var is thus a nonlinear

constrainedoptimizationproblemwhich is very difficult to solve in thegeneralcase.Fortunatelyit canbegreatly

simplified with two hypotheses:

Causality. Theforecastmodelcanbeexpressedastheproductof intermediateforecaststeps,which

reflectsthecausalityof nature.Usuallyit is theintegrationof anumericalpredictionmodelstarting

with asthe initial condition.If the times i aresorted,with so that is the identity,

then by denoting  the forecast step from  to  we have and by recurrence
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Tangent linear hypothesis. The costfunction canbe madequadraticby assuming,on top of the

linearization of , that the operator can be linearized, i.e.

where is the tangent linear (TL) model, i.e. the differential of . For a discussionof this

hypothesis,refer to thesectionon thetangentlinearhypothesis,in which theremarksmadeon

apply similarly to . It explains that the realismof the TL hypothesisdependsnot only on the

model, but also on the generalcharacteristicsof the assimilationsystem,including notably the

length of the 4D-Var time interval.

Thetwo hypothesesabovesimplify thegeneralminimizationproblemto anunconstrainedquadraticonewhich is

numericallymucheasierto solve. Thefirst term of thecostfunction is no morecomplicatedthanin 3D-Var

andit will beleft outof thisdiscussion.Theevaluationof thesecondterm wouldseemto require integrations

of theforecastmodelfrom theanalysistimeto eachof theobservationtimes , andevenmorefor thecomputation

of thegradient . Wearegoingto show thatthecomputationscanin factbearrangedin amuchmoreefficient

way.

10.2  Theorem: minimization of the 4D-Var cost function

Proof:

The first stage is the direct integration of the model from  to , computing successively at each observation time :
1) the forecast state ,
2) the “normalized departures”  which are stored,
3) the contributions to the cost function
4) And finally .

To compute  it is necessary to perform a slightly complex factorization:

and the last expression is easily evaluated from right to left using the following algorithm:
5) initialize the so-calledadjoint variable  to zero at final time:
6) for eachtime step thevariable is obtainedby addingtheadjoint forcing to andby performingthe

adjoint integration by multiplying the result by , i.e.
7) at the end of the recurrence, the value of the adjoint variable  gives the required result.

Theterminologyemployedin thealgorithmreflectsthefact that thecomputationslook like the integrationof an

adjointmodelbackwardin timewith atime-steppingdefinedby thetransposetime-steppingoperators andan

externalforcing , which dependson thedistancebetweenthemodeltrajectoryandtheobservations.In this

discrete presentation it is just a convenient way of evaluating an algebraic expression25.

Theevaluationof the4D-Varobservationcostfunctionandits gradient, and , re-

quiresonedirectmodelintegrationfrom times0 to andonesuitablymodifiedadjoint integra-

tion made of transposes of the tangent linear model time-stepping operators.
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10.3  Properties of 4D-Var

Figure  12. Example of 4D-Var intermittent assimilation in a numerical forecasting system. Every 6 hours a 4D-

Var is performed to assimilate the most recent observations, using a segment of the previous forecast as

background. This updates the initial model trajectory for the subsequent forecast.

Whencomparedto a3-D analysisalgorithmin asequentialassimilationsystem,4D-Varhasthefollowing charac-

teristics:

• it works only underthe assumptionthat the model is perfect.Problemscanbe expectedif model

error are large.

• it requirestheimplementationof theratherspecial operators,theso-calledadjointmodel.This

can be a lot of work if the forecast model is complex.

• in a real-timesystemit requirestheassimilationto wait for theobservationsover thewhole4D-Var

time interval to be availablebeforethe analysisprocedurecanbegin, whereassequentialsystems

can process observations shortly after they are available. This can delay26 the availability of .

• is usedas the initial statefor a forecast,thenby constructionof 4D-Var one is surethat the

forecast will be completely consistentwith the model equationsand the four-dimensional

distribution of observationsuntil the end of the 4D-Var time interval (the cutoff time). This

makes intermittent 4D-Var a very suitable system for numerical forecasting (Fig. 12).

• 4D-Var is anoptimalassimilationalgorithmover its timeperiodthanksto thefollowing theorem.It

meansthat it usestheobservationsaswell aspossible,evenif is not perfect,to provide in a

much lessexpensive way than the equivalent Kalman Filter. For instance,the coupling between

advection and observed information in illustrated inFig. 13.

25.  In a continuous (in time) presentation, the concept of adjoint model could be carried much further into the area of differential equations.
However, this is not relevantto realmodelswheretheadjointof thediscretizedmodelmustbeused,insteadof thediscretizationof acontinu-
ous adjoint model. The only relevant case is if some continuous operators have a simple adjoint: then, with a careful discretization that pre-
serves this property, the implementation of the discrete transpose operators can be simplified.

26.  Some special implementations of 4D-Var can partly solve this problem.
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Figure  13. Example of propagation of the information by 4D-Var (or, equivalently, a Kalman filter) in a 1-D

model with advection (i.e. transport) of a scalar quantity. All features observed at any point within the 4D-Var

timewindow will berelatedto thecorrectupstreampointof thecontrolvariableby thetangentlinearand

adjoint model, along the characteristic lines of the flow (dashed).

10.4  Equivalence between 4D-Var and the Kalman Filter

Over a giventime interval, undertheassumptionthatthemodelis perfect,with thesameinput data(initial back-

groundandits covariances , distribution of observationsandtheir covariances ), the4D-Var analysisat the

end of the time interval is equal to the Kalman filter analysis at the same time.

This theoremis discussedin moredetailsin thesectionabouttheKalmanfilter algorithm,with adiscussionof the

pros and cons of using 4D-Var.

A specialpropertyof the4D-Var analysisin themiddleof thetime interval is that it usesall theobservationssi-

multaneously, not just the ones before the analysis time. It is said that 4D-Var is asmoothing algorithm27.

Ref: TalagrandandCourtier1987,ThépautandCourtier1991,RabierandCourtier1992,LacarraandTalagrand

1988,Erricoet al. 1993.

11. ESTIMATING THE QUALITY OF THE ANALYSIS

It is usuallyanimportantpropertyof ananalysisalgorithmthatit shouldbeableto provideanestimateof thequal-

ity of its output.If thereis no observationthequality is obviously thatof thebackground.In a sequentialanalysis

systemtheknowledgeof theanalysisquality is usefulbecauseit helpsin thespecificationof thebackgrounderror

27.  Equivalent to theKalman smoother algorithm which is a generalization of the Kalman filter, but at a much smaller cost.
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covariancesfor the next analysis,a problemcalledcycling the analysis.If the backgroundis a forecast,thenits

errorsarea combinationof analysisandmodelerrors,evolved in time accordingto themodeldynamics.This is

explicitly represented in the Kalman filter algorithm.

If theanalysisgain hasbeencalculated,e.g.in anOI analysis,thentheanalysiserrorcovariancematrix is pro-

vided byEq. (A3)

(A3)

which reduces to (A4) in the unlikely case where  has been computed exactly.

In avariationalanalysisprocedure,theerrorcovariancesof theanalysiscanbeinferredfrom thematrixof second

derivatives, orHessian, of the cost function thanks to the following result:

11.1  Theorem: use of Hessian information

Proof:

The Hessian is obtained by differentiating  twice with respect to the control variable :

(A5)

Now we express the fact that  and we insert the true model state into the equation:

Hence

Whenit is multipliedontheright by its transpose,andtheexpectationof theresultis taken,theright-handsidethencontains
two terms that multiply

The Hessianof the costfunction of the variationalanalysisis equalto twice the inverseof the

analysis error covariance matrix:
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which is zero becausewe assumebackgroundand observation errors are uncorrelated.The remaining terms lead to,
successively:

which proves the result.

11.2  Remarks

Figure  14. Illustration in a one-dimensional problem of the relationship between the Hessian and the quality of

the analysis. In one dimension, the Hessian is the second derivative, or convexity, of the cost-function of the

variational analysis: two examples of cost-functions are depicted in the upper panel, one with a strong convexity

(on theleft), theotherwith aweakerone(on theright). If thecost-functionis consistentwith thepdfsinvolvedin

the analysis problem, the Hessian is a measure of the sharpness of the pdf of the analysis (depicted in the lower

panel). A sharper pdf (on the left) means that the analysis is more reliable, and that the probability of the

estimated state to be the true one is higher.

A simple,geometricalillustrationof therelationshipbetweentheHessianandthequalityof theanalysisisprovided

in Fig. 14 . In a multidimensionalproblem,thesameinterpretationis valid alongcross-sectionsof thecost-func-

tion.

If thelinearizationof theobservationoperator canbeperformedexactly, thecostfunction isexactlyquadratic

and doesnot dependon thevalueof theanalysis: canbedeterminedassoonas is defined,evenbefore

theanalysisis actuallycarriedout28. If thelinearizationis notexact, is notconstant.It maydependalot on

, evenif itself doesnot look very differentfrom a quadraticfunction.For instance,if is continuouslydif-

ferentiablebut notstrictly convex, therearepointsatwhich . If is notcontinuous,thentherearepoints

at which is not definedat all. It meansthat mustbeexactly linearin orderto beableto calculate using

28.  Actually, neither  nor  depend on the values of the background or of the observations.
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theHessian.In practice mustbemodifiedto usethe tangentlinearof , which canbeacceptablein a close

vicinity of .

Theidentity shows clearlyhow theobserveddataincreasestheinverseerrorcovariances,

also calledinformation matrices.

Ref:Rabier and Courtier 1992.

12. IMPLEMENTATION TECHNIQUES

In mostpracticalapplications,numericalcostis animportantissue.As shown above, thereis avarietyof analysis

methodsavailable.It doesnot imply thatany of theseis thebest;they shouldberegardedasa choiceof several

compromisesbetweennumericalcost,statisticaloptimality andphysical realismof theassimilationsystem.The

sectionsbelow describeotherfeaturesof theanalysisalgorithmswhichcanbeusedto furthercutdown onthenu-

mericalcost,without sacrificingtoo muchon thesophisticationof theanalysismethoditself. They arediscussed

herein theframework of 3D-Var29, but they canbeappliedequallywell (with a few adaptations)to all relatedal-

gorithms: 1D-Var, 4D-Var, PSAS or the Kalman filter.

12.1  Minimization algorithms and preconditioning

In a variationalanalysissystema costfunctionhasto beminimized,usuallyusinganiterative descentalgorithm.

Thecostof theanalysisis proportionalto thenumberof evaluationsof thecostfunctionandits gradient30, called

thenumberof simulations. Whenthestateitself is updated,aniteration is performed.Eachiterationmayrequire

oneor moresimulations,dependingon theminimizing algorithmused.Hencethetechnicalimplementationof a

variational analysis can be summarized as asimulator operator:

How to usethesimulatorto minimizethecostfunctionis a well-developedareaof mathematics(calledoptimiza-

tion, a partof numericalanalysis). With theanalysismethodsdescribedabove, thecostfunctionwill bea scalar

functionof arealvectorin aEuclideanspace;in mostapplicationsit will bequadraticand will beunconstrained.

Thereareseveral ready-to-usealgorithmsthat do the minimization,calledminimizers. An obvious method,the

steepestdescentmethod,is to update by addingacorrectionthatis proportionalto . This is usuallynot

very efficient, andmorepopularalgorithmsaretheconjugategradientandquasi-Newtonmethods.They arestill

beingimproved.Therearemorespecializedalgorithmsfor situationswhere is not quadraticor is bounded,

e.g.simulatedannealingor thesimplex, althoughsuchmethodscanbevery expensive. The incrementalmethod

describedbelow canalsoberegardedasaparticularminimizer. A detaileddescriptionof themainminimizingal-

gorithmscanbefoundin dedicatedmathematicalbooks.Amongtheimportanttheoreticalresultsaretheoptimality

propertiesof theconjugategradientmethodin thecaseof anexactly quadraticcostfunction,andits equivalence

with a Lanczosmethodfor determiningeigenvectorsof theHessianmatrix.Also, thequasi-Newton methodscan

beregardedasapreconditioningof thecostfunctionusingaccumulatedinformationaboutthesecondderivatives.

Themainaspectof thataffectstheperformanceof conventionalminimizers(assuming is quadraticor almost)

29. Thisreflectshistory. Themainstepin meteorologicaldataassimilationmethodswasthemovefrom OI to 3D-Var. It wasamajortechnical
challengein termsof codingandnumericalcostat thetime,which requiredsomemajordevelopmentsin thefieldsof adjointcoding,formula-
tion of the incremental technique and design of the preconditioner.

30. Someminimizationalgorithmsalsouseinformationaboutthesecondderivativeof thecostfunction,which requiresthecodingof thesec-
ond-order adjoint of its components.
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is its conditionnumber. Thisquantitymeasurestheellipticity of theiso-surfacesof J, andit describesthedifficulty

of minimizationproblem(or ill-conditioning) dueto thegradient notpointingaccuratelytowardtheminimum

(Fig. 15). In this case minimizers have trouble converging, a phenomenon called thenarrow valley effect.

Figure  15. Illustration of the so-called narrow valley effect: in a plane of the control variable space where the

convexity of the cost-function depends a lot on direction, the isolines are narrow ellipses, and in most places the

gradient of the cost function is nearly orthogonal to the direction of the minimum, which means that

minimization algorithms will tend to waste many iterations zigzagging slowly towards the optimum.

Condition number. Theconditionnumberof is definedto betheratiobetweenthelargestandthesmallestei-

genvalue of . The larger the number, the more ill-conditioned the problem is.

If theconditionnumberis equalto one,i.e. is proportionalto , thecostfunctionis saidto besphericaland

the minimum can be found in one iteration because  points directly toward the minimum.

In thegeneralcase, is elliptic, but it is possibleto defineachangeof minimizationspacecalledpreconditioning

thatdecreasestheconditionnumber. Theideais to presenttheminimizerwith aproblemthatis not theminimiza-

tion of , but anothereasierproblemfrom which canbeobtainedeasily. Themappingbetweenbothprob-

lems is defined as follows using apreconditioner operator :
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12.2  Theorem: preconditioning of a variational analysis

Theproof is left asanexercise.In 3D-Var, asimpleandefficientpreconditioneris thesymmetricleft-handsquare

root of , i.e. a matrix31 L such that . In this case one can show that

i.e. the termis now thecanonicalinnerproduct.An idealpreconditionerwould of coursebeprovidedby the

symmetricsquareroot of the Hessianmatrix. Somesophisticatedminimizer packagesallow the userto provide

his own preconditioner to the code, which can take the form of a clever specification of the inner product.

Ref:Gilbert and Lemaréchal 1989.

12.3  The incremental method

Theincrementalmethodis arelatively empiricaltechniquedesignedto reducethecostof solvingapredefinedvar-

iational problem, e.g. by reducing the resolution of the increments.

In theintroductionit wasexplainedhow thecontrolvariablecouldbemadesmallerthanthemodelstateby requir-

ing thattheincrementscanonly benon-zeroin asubspaceof themodel.In thiscasethereis noguaranteethatthe

analysisverifiesany optimality conditionin thefull modelspace.For instance,OI solvestheproblemseparately

in asetof subspaces(definedby theobservationselection),but theresultis notasoptimalasagloballeast-squares

analysis.With 3D- or 4D-Var is it usuallynot affordableto solve thevariationalproblemat thefull modelresolu-

tion. However, it is expectedthatmostof thecomplexity of theanalysisis in thesynopticscales,becausethis is

wheremostbackgrounderrorsareexpectedto be.If the incrementsareright at thesynopticscales,thenonecan

expectthesmallerscalesto bemoreor lessforcedto berealisticfeaturesby themodeldynamics.It is undesirable,

though,to completelyneglectthesmallscalesin theanalysisprocedurebecausethey areimportantin thecompar-

isonof theobservationswith thebackgroundstate.In otherwords,oneis looking for a low-resolutioncorrection

If L is an invertible operator, an equivalent rewriting of the minimization problem:

,

with the initial point ,
is thepreconditioned problem:

,

with the initial point  .

The solution is given by .

31.  The symmetric square root is not unique, it is defined modulo an orthogonal matrix.
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to a high-resolutionbackground.The incrementalmethoddescribedbelow hasbeendesignedfor this particular

problem.Mathematically, it canbethoughttheapproximationof a largeproblemby a sequenceof smallerprob-

lems. However, there is no proof of the convergence of the general procedure32.

In the incrementalmethodsomehigh-resolutionversionsof the cost function, the observation operatorandthe

modelstateareconsidered,denotedrespectively . Wearetrying to minimize . Oneor several

successiveapproximationsto thisproblemaresolvedsuccessfully. Eachoneis an inner loop thattriesto updatea

high-resolutionstate into anotherone thatis moreoptimal(in thefirst update, ). Theinput

information to the inner loop is given by the high-resolution departures:

and by a low-resolution version  of defined by a conversion operator :

It is naturalto linearizethelow-resolutionobservationoperator in thevicinity of which is thebestcurrently

availableestimateof theanalysis33, whichyieldsa linearizedobservationoperator thatdependson theupdate

index , and defined as the differential of  in the vicinity of :

However, for consistency with thehigh-resolutionproblem,onealsorequiresthat thelow-resolutionis keptcon-

sistentwith thehigh-resolutiononefor , sothatthelinearizeddeparturesusedat low resolutionwill becal-

culated as

so that the low-resolution cost-function to minimize in the inner loop is

which is exactly quadratic.Its minimum is which canin turn be usedto updatethe high-resolutionstate

using a (possibly nonlinear) ad hoc conversion operator :

which ensuresthat the high-resolutionstateis not modifiedif the inner loop minimizationdoesnot changethe

state.From thenew high-resolutiondepartures canbecalculatedandusedto definethenext low-

resolutionproblem.If thenthehigh- andlow-resolutionproblemsarefully consistentwith each

otherandthewholealgorithmhasconverged.However, it notguaranteedthatthereis aconvergenceatall. This is

why onemustbe carefulaboutthe physical implicationsof changingthe resolution.The intuitively important

assumption for convergence (this can be proven in simplified systems) is that

32.   It is possible to guarantee convergence for some special forms of the incremental algorithm.

33.  One would rather like to use a low-resolution version of the linearized high-resolution  in the vicinity of  but it would be more
expensive than the technique described here.
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i.e. thechangesin themodelequivalentsof theobservationsshouldbesimilar at high andlow resolutions.If for

instancethey are of oppositesigns,one can expect the model stateat high resolutionto go away from the

observationsduring the procedureuntil it is stoppedby the term—anot very desirablebehaviour. Whether

this is a genuineproblem is still an areaof research.History has shown so far that 3D-Var with a simple

incrementalformulationanda ratherlow resolutionof theinnerloopscanbemuchbetterthananOI algorithmat

full resolution, for a similar numerical cost.

Ref:Courtier et al.1994.

12.4  The adjoint technique

As shown in theexplanationof the4D-Varmethod,somecomputationalsavingscanbeachievedby asuitableor-

deringof thealgebraicoperations,in orderto reducethesizeandnumberof thematrix multiplicationsinvolved.

For minimizationproblemsin particular, whenthe derivative of a scalarfunction with respectto a large vector

needsto beevaluated(e.g.Jo), it is advantageousto usethechainrule backwards, i.e. from thescalarfunctionto

theinputvector. Algebraicallythismeansreplacingasetof matricesby their transposes,hencethenameof adjoint

technique. The definition of the adjoint depends on the scalar products34 used:

Important remarks on the adjoints
• Riesztheorem: Theadjointalwaysexistsandit is unique,assumingspacesof finite dimension35.

Hence,codingtheadjointdoesnot raisequestionsaboutits existence,only questionsof technical

implementation.

• In themeteorologicalliterature,the term adjoint is often improperlyusedto denotetheadjoint of

thetangentlinearof anon-linearoperator. Onemustbeawarethatdiscussionsaboutthe“existence

of the adjoint” usuallyaddressthe existenceof the tangentlinear operator(or the acceptabilityof

usingthe adjoint of an impropertangent-linearin order to minimize a 4D-Var cost-function).As

explained above, the adjoint itself always exist.

• In general,the adjoint dependson the definition of spaces and . For instance,a canonical

injection(i.e. with beinga subspaceof ) is not necessarilyself-adjointalthough

does not involve any arithmetic operation.

• In general,the adjoint dependson the choiceof scalarproducts,even if . For instance,a

symmetricmatrix may not be self-adjointif the scalarproductis not the canonicalproduct(see

below).

34.   or:inner products

Adjoint operator. By definition,givena linearoperator goingfrom a space to a space ,

andscalarproducts , and in theserespective spaces,the adjoint of is the

linear operator  such that for any vectors  in the suitable spaces,

35.  It is actually true for all continuous operators in Hilbert spaces, but this is outside the scope of this paper.
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The proof is obvious from the definition of :

andnotingthatE is invertible.In mostpracticalcases(suchasin therestof thispaper)theimplicit scalarproduct

usedis the canonicalinner product36, so that the transposeis the adjoint: . However, onemust take

carewhenever anotherscalarproductis used,becauseit hasimplicationson thecodingof theadjoint: thescalar

product coefficients or their inverses must be used according to the above equation.

Adjoint of a sequenceof operators. Like thetranspose,theadjointof aproductof operatorsis theproductof the

adjointsin thereverseorder. Thescalarproductmatricescancelout eachother, so that if is a

sequence of operators, its adjoint is

which shows that,evenif thescalarproductsarenot thecanonicalinnerproduct,in mostof theadjointcodingit

canbeconsideredthat the adjoint is the transpose.Theguidelinesfor practicaladjointcodingaredetailedin an

appendix.

Ref:Errico and Vukicevic 1992.

13. DUAL FORMULATION OF 3D/4D-VAR (PSAS)

The3D-Var formulation(A5) canberewritten into a form calledPSAS(PhysicalSpaceAssimilationSystem37)

which is equivalent in the linear case only. The idea is to notice that the expression

can be split as the following two equalities

Theorem: adjoint and scalar product change. Theoperator beingidentifiedwith

its matrix,andthescalarproducts and beingidentifiedwith their symmetric

positive definitematrices and suchthate.g. , thematrix of theadjoint

of  is

36.  or:inner dot product, or:Euclidean product.

37.  The misleading name PSAS was introduced for historical reasons and is widely used, probably because it sounds like the US slang word
pizzazz.
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where hasthe samedimensionas andcanbe regardedasa kind of “increment” in observation space38,

whereas is a smoothingtermthatmapstheincrementfrom observationto modelspace.Theaim is to solve

the analysis problem in terms of rather than in model space. One way is to solve for  the linear system

which canberegardedasthedualof theOI algorithm.Anotherway is to find a costfunctionthat minimizes,

for instance

which is a quadratic cost function. The practical PSAS analysis algorithm is as follows:

1) Calculate the background departures

2) Minimize . Somepossiblepreconditioningsaregivenby thesymmetricsquareroot of or

.

3) Multiply the minimum  by  to obtain analysis increments.

4) Add the increments to the background.

A 4-D generalizationof PSAS is obtainedby a suitableredefinition of the space to be a concatenation

of all thevalues at all observationtime steps . Then mustbereplacedby anoperator

thatusesthetangentlinearmodel to maptheinitial modelstateto theobservationspaceat eachtime step ,

i.e. . Thefactorizationof thecostfunctionevaluationusingtheadjointmethodis applied

to thecomputationof theterm , sothattheevaluationof the4D-PSAScostfunction is asfollows:

1) Calculate the departures  for each time step, (this needs only be done once)

2) Integratethe adjoint model from final to initial time, startingwith a null modelstate,addingthe

forcing at each observation timestep,

3) Multiply the resulting adjoint variable at initial time by , which yields ,

4) Integratethetangent-linearmodel,startingwith asmodelstate,storingthestatetimes at

each observation time step. The collection of the stored values is .

5) Add and (both obtainedby sumsof alreadycomputedquantities)to obtain

.

Morecommentson the4D-PSASalgorithmareprovidedin Courtier(1997).ThePSASalgorithmis equivalentto

therepresenter method (Bennett and Thornburn 1992).

As of todayit is still unclearwhetherPSASis superioror not to theconventionalvariationalformulations,3D and

4D-Var. Here are some pros and cons:

• PSASis only equivalent to 3D/4D-Var if is linear, which meansthat it cannotbe extendedto

weakly non-linear observation operators.

38. Note,though,thatit doesnothavetheright physicaldimensions.Theactualincrementin observationspaceis , andaprecise
physical interpretation of  is difficult.
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• However, mostimplementationsof 3D/4D-Var areincremental,which meansthatthey do rely on a

linearizationof anyway: they includenon-linearitythroughincrementalupdates,which canbe

used identically in an incremental version of PSAS.

• It is awkward to include a  term in PSAS for constraints expressed in model space.

• Backgrounderror modelscanbe implementeddirectly in PSASasthe operator. In 3D/4D-Var

they need to be inverted (unless they are factorized and used as preconditioner).

• Thesizeof thePSAScostfunction is determinedby thenumberof observations insteadof the

dimensionof themodelspace . If thenthePSASminimizationis donein a smallerspace

than 3D/4D-Var. In a 4D-Var context, increaseswith the length of the minimization period

whereas  is fixed, so that this apparent advantage of PSAS may disappear.

• The conditioningof a PSAScost function preconditionedby the squareroot of is identical to

thatof 3D/4D-Varpreconditionedby thesquarerootof . However thecomparisonmaybealtered

if more sophisticatedpreconditioningsare used,or if one squareroot or the other is easierto

specify.

• Both 3D/4D-Var andPSAScanbe generalizedto includemodelerrors.In 3D/4D-Var this means

increasingthesizeof thecontrolvariable,which is not thecasein PSAS,althoughthefinal costof

both algorithms looks the same.

Ref:Bennett and Thornburn 1992,Courtier 1997.

14. THE EXTENDED KALMAN FILTER (EKF)

TheKalmanFilter andits extendedversion(EKF) aredevelopmentsof the least-squaresanalysismethodin the

framework of a sequentialdataassimilation,in which eachbackgroundis providedby a forecastthatstartsfrom

thepreviousanalysis.It is adaptedto thereal-timeassimilation39 of observationsdistributedin timeinto aforecast

model .

Theanalysisequationsof thelinearKalmanFilter areexactly theonesalreadydescribedin theleast-squaresanal-

ysistheorem.Thenotationis thesame,exceptthatthebackground(i.e. forecast)andanalysiserrorcovariancema-

trices are now respectively denoted  and . The background state  is a forecast denoted .

14.1  Notation and hypotheses

They are the same as in the least-squares analysis theorem, except that:

• the backgroundandanalysiserror covariancematrices and arerespectively replacedby

and  to denote the fact that the background is now a forecast.

• The time index of eachquantity is denotedby the suffix . The model forecastoperatorfrom

dates to  is denoted by

• forecast errors: the deviation of the forecast prediction from the true evolution,

, is calledthemodelerror40 andwe assumethat it is not biased41 and

that themodel error covariance matrix  is known.

39.  The wordfilter characterizes an assimilation techniques that uses only observation from the past to perform each analysis. An algorithm
that uses observations from both past and future is called asmoother. 4D-Var can be regarded as a smoother. Observation smoothing can be
usefulfor non-realtimedataassimilation,e.g.reanalysis,althoughtheideahasnotbeenusedmuchyet.TheKalmanfilter hasasmootherver-
sion calledKalman smoother.

40.  Ormodelling error.

41.  This is equivalent to assuming that the background errors are unbiased, so it is not really a new hypothesis.
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• uncorrelatedanalysisand modelerrors: theanalysiserrors andmodelerrorsof the

subsequent forecast  are assumed to be mutually uncorrelated.

• linearized forecastoperator: thevariationsof themodelpredictionin thevicinity of the forecast

stateareassumedto be a linear function of the initial state:for any closeenoughto ,

,where  is a linear operator.

14.2  Theorem: the KF algorithm

Proof:

The forecastequation(KF1) just translatesthe fact that we usethe model to evolve the modelstate,startingfrom the
previousoptimalanalysis . Theequation(KF2) is obtainedby first subtracting from (KF1) andusingthe
linearity of the forecast operator:

Multiplying it on theright by its transposeandtaking theexpectationof theresultyields,by definition, on the
left-handside,andon the right-handsidefour terms.Two of theseare and by
definition.Theremainingtwo termsarecross-correlationsbetweentheanalysiserror andthemodelerror
for , which areassumedto be zero.This meansthat provided by (KF2) is the backgrounderror
covariance matrix for the analysis at time .

The equations(KF3), (KF4) and(KF5) aresimply the least-squareanalysisequations(A2), (A1) and(A4) that

were proven above, using  as background errors, and assuming that is computed optimally.

Underthespecifiedhypothesestheoptimalway(in theleastsquaressense)to assimilatesequen-

tially theobservationsis givenby theKalmanfilter algorithmdefinedbelow by recurrenceover

the observation times :

State forecast (KF1)

Error covariance forecast (KF2)

Kalman gain computation (KF3)

State analysis (KF4)

Error covariance of analysis (KF5)

and the analyses are the sequences of .
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14.3  Theorem: KF/4D-Var equivalence

14.4  The Extended Kalman Filter (EKF)

TheKalmanfilter algorithmcanbegeneralizedto non-linear and operators,althoughit meansthatneither

theoptimalityof theanalysisnor theequivalencewith 4D-Varhold in thatcase.If is non-linear, canbede-

finedasits tangentlinear in thevicinity of , asdiscussedin a previoussection.Similarly, if is non-linear,

whichis thecaseof mostmeteorologicalandoceanographicalmodels, canbedefinedasthetangentlinear fore-

cast model in the vicinity of , i.e. we assume that for any likely initial state  (notably ),

andthe realismof this hypothesismustbeappreciatedusingphysicalarguments,asalreadydiscussedaboutthe

observation operatorand 4D-Var. If and/or are non-linear, the algorithm written above is called the

ExtendedKalman Filter. Note that the linearization of interacts with the model errors in a possibly

complicatedway, ascanbe seenfrom the proof of Eq. (KF2) above. If non-linearitiesareimportant,it may be

necessaryto includeempiricalcorrectiontermsin the equation,or to usea moregeneralstochasticprediction

methodsuch as an ensembleprediction (or Monte Carlo) method,which yields an algorithm known as the

Ensemble Kalman Filter.

14.5  Comments on the KF algorithm

The input to the algorithmsis: the definition of the modelandthe observation operator, the initial conditionfor

whentherecurrenceof thefilter is started42, thesequenceof observations , andthesequenceof model

andobservationerrorcovariancematrices . Theoutputis thesequenceof estimates of themodel

stateandits errorcovariancematrix.Theorganizationof theKF assimilationlookslike a coupledstreamof esti-

mations of model states and error covariances (Fig. 16).

Over the sametime interval assumingthat (i.e. the modelis perfect),andthat

bothalgorithmsusethesamedata(notably, is theinitial backgrounderrorcovariancema-

trix), then there is equality between

1) the final analysis  produced by the above Kalman filter algorithm, and

2) the final value of the optimal trajectory estimated by 4D-Var, i.e. .

This theoremmeansthattheKF verifiesthefour-dimensionalleast-squaresoptimality theoryex-

pressedby the4D-Varcostfunction,althoughit isdefinedbyasequenceof 3-Danalyses,whereas

4D-Var solves the 4-D problem globally.

42. Notethatit is notwell known whether, aftera long time,theanalysisceasesor not to dependsignificantlyon thewaytheKF is initialized.
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Figure  16. The organization of computations in a KF or EKF assimilation.

Thevariationalform of theleast-squaresanalysiscanbeusedin theanalysisstepof theKalmanfilter, insteadof

the explicit equations written above.

Thenumericalcostof theKF or EKF is thatof theanalysisitself, plustheestimationof theanalysiserrorcovari-

ances,discussedin aspecificsection,plusthe(KF2) covarianceforecastequationwhichrequiresn forecastsof the

tangentlinearmodel( beingthedimensionof themodelstate)to build theoperator . Thestoragecostitself

is significant,sinceeach matrix is (only a half canbestoredsincethey aresymmetric)andin (KF5) the

matrix mustbeevaluatedandstoredtoo (unlessthevariationalform is used,in which case evaluationsof

thegradientof thecostfunctionmustbeperformedto build theHessianwhich mustthenbe inverted).It means

thatthecostof theKF ismuchlargerthan4D-Var, evenwith smallmodels.Thealgorithmshouldratherberegarded

asa referencein thedesignof moreapproximateassimilationalgorithmswhicharebeingdevelopednowadays.It

is still notclearwhatis thebestwayto approximatetheKF, andtheanswerwill probablybeapplication-dependent.

Therearemany similaritiesbetween4D-VAR andtheEKF andit is importantto understandthefundamentaldif-

ferences between them:
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• 4D-VAR canbe run for assimilationin a realisticNWP framework becauseit is computationally

much cheaper than the KF or EKF.

• 4D-VAR is moreoptimal thanthe(linearor extended)KF insidethetime interval for optimization

because it uses all the observations at once, i.e. it is not sequential, it is a smoother.

• unlike the EKF, 4D-VAR relies on the hypothesis that the model is perfect (i.e. ).

• 4D-VAR canonly berun for a finite time interval, especiallyif thedynamicalmodelis non-linear,

whereas the EKF can in principle be run forever.

• 4D-VAR itself doesnot provide an estimateof , a specificprocedureto estimatethe quality of

the analysis must be applied, which costs as much as running the equivalent EKF.

Ref:Ghil 1989,Lacarra and Talagrand 1988,Erricoet al. 1993.

15. CONCLUSION

Thispresentationof analysisalgorithmshasbeencentredonthealgebraof theleast-squaresanalysismethod.How-

everoneshallnot forgettheimportanceof otherissueslikeobservationscreeningandphysicalconsistency of the

assimilation,includingbiascorrection,whichcanbeof greatimportancefor thequalityof theassimilationsystem

taken as a whole.

Therecenttrendin dataassimilationis to combinetheadvantagesof 4D-Var andtheKalmanfilter techniques.In

a real-timeassimilationsystem,4D-Var over a shorttime interval is a very efficient analysismethod.A Hessian

estimationmethodcanprovideagoodestimateof theanalysiserrorcovariancematrix.A simplifiedversionof the

extendedKalmanfilter forecaststepis thenused(SKF) to estimatetheforecasterrorcovariancesat thetimeof the

next analysis,whichmustthenbecombinedwith anempirical,morestaticmodelof thebackgrounderrorcovari-

ances.It is hopedthatagoodcompromisebetweenthesealgorithmscanbeachieved.Therecanbesomeconstruc-

tive interactionswith theproblemsof ensembleprediction,andspecificstudiesof analysisquality like sensitivity

studiesandobservationtargeting.Thesenew methodsprovide many by-productswhich still remainto beusedas

diagnostic tools for improving the assimilation and forecast system.

APPENDIX A A PRIMER ON LINEAR MATRIX ALGEBRA

Note:this is asimplifiedpresentationfor finite-dimensionalrealvectorspaces.For moregeneralresultsandrigor-

ous mathematical definitions, refer to mathematical textbooks.

Matrix. A matrix of dimension isatwo-dimensionalarrayof realcoefficients where

 is the line index,  is the column index. A matrix is usually represented as a table:

A matrix for which  is called a square matrix.

Diagonal. Thediagonalof a square matrix is thesetof coefficients . A matrix is called

Q 0=

Pf

A l m× n e o( )e 1… p o, 1…q= =

d r

A n e o( )

n 11 n 12 . . . n 1q
n 21 n 22 n 2q
. . .
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diagonal if all its non-diagonal coefficients are zero.

Transpose. The transposeof a matrix is a matrix denoted with thecoefficientsdefinedby

i.e. thecoefficients and areswapped,which lookslikeasymmetrywith respectto thedi-

agonal:

Symmetry. A squarematrix is symmetricif it is equalto its transpose,i.e. . This is equivalentto having

 for any  and . A property of diagonal matrices is that they are symmetric.

Scalar multiplication . A matrix timesa realscalar is definedasthe matrix with coeffi-

cients .

Matrix sum. Thesumof two matrices and is definedasthe matrix with coefficients

. It is easyto seethat the sumandscalarmultiplication definea vectorspacestructureon the setof

matrices(thesumis associativeandits neutralelementis thezeromatrix,with all coefficientssetto zero).

Matrix product. Theproductbetweenan matrix anda matrix is definedasthe matrix

 with coefficients  given by

Theproductis notdefinedif thenumberof columnsin is not thesameasthenumberof linesin . Theproduct

is not commutative in general.Theneutralelementof theproductis theidentity matrix definedasthediagonal

matrixwith values1onthediagonal,andthesuitabledimension.If theproductcanbegeneralizedtomatrix

timesvector by identifying theright-handtermof theproductwith thecolumn of vectorcoordinatesin a

suitablebasis;thenthemultiplication(on theleft) of a vector by a matrix canbeidentifiedto a linearappli-

cation from  to . Likewise,  matrices can be identified with scalars.

Matrix inverse.A square matrix is called invertible if thereexist an matrix denoted and

called inverse of , such that

Trace. Thetraceof asquare matrix is definedasthescalar which is thesumof the

diagonal coefficients.

Useful properties.

(A, B, C are assumed to be such that the operations below have a meaning)

The transposition is linear:

Transpose of a product:

Inverse of a product:

Inverse of a transpose:
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Associativity of the product:

Diagonal matrices: their productsandinversesarediagonal,with coefficientsgivenrespectively by theproducts

and inverses of the diagonals of the operands.

Symmetric matrices: thesymmetryis conservedby scalarmultiplication,sumandinversion,but notby theprod-

uct (in general).

The trace is linear:

Trace of a transpose:

Trace of a product:

Trace and basischange: , i.e.thetraceis anintrinsicpropertyof thelinearapplicationrep-

resented by .

Positivedefinite matrices. A symmetricmatrix is definedto bepositivedefiniteif, for any vector , thescalar

unless . Positive definitematriceshave realpositive eigenvalues,andtheir positive definiteness

is conserved through inversion.

APPENDIX B PRACTICAL ADJOINT CODING

As explainedpreviously, codingtheadjointis mostlyaproblemof codingatranspose.Assuminga linearoperator

is availableasa pieceof code,calleddirectcode, therearetwo approachesto implementthecodefor theadjoint

operator. Oneis to take theoperatorasa whole,storeits matrix (e.g.by takingtheimageof eachcanonicalbasis

vector;thematrix of a tangentlinearoperatoris calledtheJacobianmatrix andits coefficientsarepartialderiva-

tivesof theoutputwith respectto theinput) andcodethemultiplicationby its transpose,which is only feasibleif

the matrix can be evaluated and stored at a reasonable price.

Theother, morecommonapproach,is to usetherule above for takingtheadjointof a sequenceof operators,and

to applyit to eachelementarystepof thedirectcode,called“model” hereto fix ideas.Most of thetime thereis a

pieceof adjoint to codefor each(or almost)active instructionof thedirectcode,consideredaselementarylinear

operators,eachin its little subspace.Theconceptof ‘subspace’of apieceof codeis justifiedby thefactthatmost

componentsof thestatearenot modifiedby it, sothatthecorrespondingoperatoris a block-diagonalmatrix with

just a little block spanning the variables that are actually used on input and modified on output:

Fromacodingpointof view, it is only necessaryto codetheactionperformedby , theothervariablesarekept

unchanged anyway. This allows one to work locally, by following a few simple rules:

• the adjoint of a sequence of operations is the reverse sequence of the transposes of each operation.
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• the scalarproductsneedto be consideredonly at the beginning andat the endof the codethat is

beingadjointed(unlessonewantsto usesomespecialpropertiesof piecesof codewith respectto

particular products, like the unitary character of Fourier transforms with respect to the  norm).

• the input to a pieceof code(e.g.a subroutine)becomesthe outputof the correspondingadjoint

code,andvice versa.Caremustbe taken whenspecifyingthe interfacesbetweensubroutines,so

what is input andwhat is outputat eachstagemustbe clear. It meansthat the adjoint coding is

mucheasierif goodprogrammingprincipleshave beenrespectedin the direct codeto startwith,

such as modularity, consistent variable naming and interface control.

• it is recommendedto usethe samevariablenamesfor matchingdirect (i.e. tangentlinear) and

adjoint modelstates,in orderto be ableto reusethe direct codefor arraydimensioningandself-

adjoint operations.

• theactualcodingof theadjoint is performedat thesmallestpossiblelevel of active subsetsof code

(one active instruction,or a small numberof instructionsthat clearly depict an explicit linear

operator)that musteachbe a linear operatorwith known coefficients.Its adjoint is the transpose

operator, taken in the relevant space, which implies the following items.

• Eachmodifiedvariableis a part of the input spaceunlessthis subsetof codeis the first time it is

used in the whole direct code, i.e. it is being “defined” at this stage.

• Eachinput variableis a partof theoutputspaceunlessthis subsetof codeis thelast timeit is used

in the whole direct code, i.e. it is being “undefined” at this stage.

• The adjoint of a variable “undefinition”, i.e. the end of its scope, is its setting to zero.

• For coderobustness,it is advisedto considerthatnovariableis beingundefinedanywhereexceptat

the endof codeunits like subroutineswherethey mustall be pre-initializedto zero,so that each

adjoint operation will be written as the addition of something to a variable.

Thelast itemsdeserve someillustration.Whena new variablestartsto beusedat somepoint in thecode,(e.g.an

arrayis allocated,or a variableis initialized for thefirst time) we go from a spacee.g. to a biggerspace,e.g.

. Hencein theadjointwegofrom to , whichis aprojectionoperator, and is “undefined”in the

adjointcode,althoughno matchinginstructionexists in a languagelike Fortran, so thatno specificstatementis

neededin theadjoint.The undefinitionis usuallyperformedwhenreturningfrom an adjoint subroutine.If is

used later in the adjoint code, it must have been re-initialized.

Whena new variablestopsbeingused,we go from space to , andthis is usuallyimplicit in thedirect

codeafterthelast instructionthatuses . Onecanconsiderthatthedefinitionof a local variableis lost whenre-

turningfrom asubroutine.This inconspicuousoperationin thedirectcodeis mathematicallyknown asacanonical

injection.Its matrix is obtained from the direct code matrix, which is aprojection:

(Sothatthetransposeoperator43 reads,usingthesamevariableletters(althoughthey do not necessarilyhave the

same values as in the direct operation):

43.  Sometimes called theadjoint of identity.
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or, in Fortran:

b=0.

If this instructionis forgottenit will resultin a badly initializedb variable,with possiblyerroneousresultsif the

same variable name is used for other computations before.

Hencetheadjointof evena simpleassignmenta=b dependson thescopeof thevariables.If the input spaceis

 and the output space is , the algebraic direct operation is

so that the adjoint is trivially

andthe adjoint codeis b=a. If however may be usedlater in the direct code,it is not beingundefined,the

output space is  and the algebraic direct operationa=b is now

The adjoint is

(andtheadjointcodeis b=b+a, which is quitedifferent,becauseb is now bothin theoutputandin theoutputof

thedirectcode44. If b is usedlater in thedirectcode,it will alreadycontainsomethingwhich will beusedwhen

doingb=b+a in theadjointcode.Physically speaking,it meansthat thesensitivity of theoutputto (which is

whattheadjointvariableb contains)is thesumof thesensitivities to in all operationsthatreadthevalueof b in

the direct code.

If onecodesb=b+a althoughb is not usedlater in thecode,b is still correctlyinitialized in theadjointbecause

theadjointof its eventualundefinitionisb=0whichwill beplacedbefore.It canbedifficult to rememberin alarge

codewhereeachvariableis usedfor thelasttime.Variableundefinitionis usuallyeasyto spotbecauseit is always

at theendof programsections(subroutines)or atvariablede-allocation.If theinterfacebetweenprogramsections

is clearlydocumented,thismakesit easyto pre-initializetheadjointvariablesto zeroat theright place.Hencethe

bestadjointprogrammingrule is to alwaysassumethata variableis beingusedlater, andto setall adjointcode

variables to zero when they are defined.

For instance,theadjointof a typical line of codelikea=s*b+t*c (the* is themultiplication,s andt arecon-

stants) is

a=0     ! when a is first defined in the adjoint code

b=0     ! when b is first defined in the adjoint code

c=0     ! when c is first defined in the adjoint code

44. Whethera is partof theinputspacein thedirectcodeis not important,becauseit is beingoverwritten.In theadjoint,puttingexplicitly a
in both input and output spaces would simply result in the additional useless line of adjoint code:a=a. One should worry more about the
scope of input variables than about output variables when examining the direct code.
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. . . . . . . . .

b=b+s*a

c=c+t*a

If any of thea,b,c variablesaredefinedasinput argumentsto a subroutinein theadjoint, thenof coursetheir

initial value is defined outside and they should retain their input value.

However, there is no problem of undefinition ofa in a statement likea=s*a+t*c which has the adjoint

c=0     ! when c is first defined in the adjoint code

........

a=s*a         ! not a=a+s*a !

c=c+t*a

becausea is both in the input and output spaces. Note that a conditional like this in the direct code:

if (a>0) then

  a=2*a

endif

defines a non-linear function ofa which is not licit. The problem is in the linearization, not in taking the adjoint.

Most problemswith writing adjointcodesarewith in thehandlingof thetrajectory(thelinearizationcoefficients

thatappearwhentaking thedifferentialof a non-linearoperator),becausetheadjoint requiresthesevaluesin an

orderthatis thereverseof theircomputationorder. They needto bestored,or recomputedonthefly, which is usu-

ally amatterof compromisingbetweenstoragespace(or diskI/O) andCPUtime,to assessonacase-to-casebasis.

APPENDIX C EXERCISES

The number of stars indicate roughly the degree of difficulty.

(i) Prove equation(A4) giving  if  is optimal.

(ii) Prove directly the equations given in the section on the scalar case.

(iii) Prove thetheoremon preconditioning,includingthecasewherethesquareroot of is used.Does

the condition number depend on the choice of square root matrix?

(iv) Comparethe BLUE equationswith the linear regressionequationsbetweenthe model and

observation values.

(v) Write andcommenton theBLUE analysisin a one-dimensionalmodel,with oneandthenwith 2

observations.

(vi) rewrite theKF equationsin thescalarcaseandexamineits convergencein time if themodelis the

identity and if  and  are constant.

(vii) Calculate the product of a vector with the Hessian using the simulator operator only.

(viii) The SWM (Sherley–Woodbury–Morrisson) approximation of a positive definite matrix is

( arepositive scalars, arevectors).Prove that it is positive definite,and

derive its inverse and a symmetric square root.

(ix) * Calculatethenormalizationfactorsto defineproperlytheGaussianpdfs for thebackgroundand

the analysis states.

(x) Write thealgorithmto implementa Cressmananalysis.Whathappensif theobservingnetwork is

very dense?

(xi) aprimitiveanalysistechniqueis to fit asetof polynomialsto theobservations.Derive thealgorithm

in a one-dimensional framework.

(xii) *  Generalize the polynomial fit technique to give different weights to different observations.
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B
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y
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(xiii) Prove that . Is it asufficientconditionfor thecovariancematrix to be

positive definite?

(xiv) Prove that a covariancematrix can be factorizedin the form and describesome

numerical methods to do it.

(xv) *  Give examples in which the adjoint is not the inverse, and examples in which it is.

(xvi) * Derive in thescalarcasewhatis theanalysiserrorif theweightis calculatedusinganassumed

that is not the genuine background standard error.

(xvii) * Prove thatthebackgrounderrorcovariancematrix canbefactorizedas where is a

diagonal matrix and  is the correlation matrix. What is the physical meaning of ?

(xviii) * Rewrite the 4D-Var algorithm using the inverseof the model (assumingit exists), putting the

analysis time at the end of the time interval.

(xix) * (physics regularization) In the scalar case, considering the observation operator

, designa continuouslydifferentiableobservation operator with a tunable

“regularization” parameterso that can be as small as requiredand outsidea

small interval around zero.

(xx) ** Designa scalarexampleusingthepreviousobservationoperator, in which thecost-functionhas

one or two minima, depending on the value of the regularization parameter.

(xxi) * Prove that the scalarKF, with the model equal to the identity and constanterror statistics,is

equivalent to a runningaveragethat is defined,in the limit of a continuoustime variable,by an

exponential weighting function. How does the e-folding time depend on the error statistics?

(xxii) * (adaptive filter) Rewrite the KF equation as an adaptive statistical adaptation scheme:

, wherethemodelstateis thetwo scalars and is thescalarobservation, is

an externally defined function of time. The forecast model is assumed to be the identity.

(xxiii) ** Generalizethe Cressmanalgorithm in order to retain somebackgroundinformation at the

analysis points, as in the least-squares analysis.

(xxiv) ** (retrieval andsuper-obing) Modify the BLUE equationfor whenthe observationsarereplaced

by a linear combination of them through a retrieval algorithm , i.e. .

(xxv) ** Preconditionthe PSAScost function with the symmetricsquareroot of andprove that the

condition number is then the same as 3D-Var preconditioned by the symmetric square root of.

(xxvi) *** (controlvariableremapping)In a continuousone-dimensionalmodel,derive theadjointof the

“remapping”operator where is the spacecoordinateand is an

invertible, continuously differentiable function. Does this make sense in a discrete model?

(xxvii) *** Derive the4D-Varequationsby expressingtheminimizationproblemconstrainedby themodel

equationswith its Lagrangian,andcommenton thephysicalmeaningof theLagrangemultiplier at

the analysis point.

(xxviii)** (flow-dependency in 4D-Var) Derive the Hessianof a 4D-Var in which there is one single

observationat theendof theanalysisinterval. How doestheanalysisincrementcomparewith the

singular vectors of the model? (see the training course on predictability)

(xxix) *** The NMC methodassumesthat the covariancesof forecasterror differences(differences

betweentwo forecastsstartingfrom 2 consecutive analysesandvalid at thesametime) aresimilar

to the forecasterror covariances.Formulatethis usingthe KF notationanddiscussthe validity of

the assumption.

(xxx) *** (laggedinnovationcovariances)Assumingthattheobservingnetwork is alwaysthesamein the

KF, prove thatif theanalysisweightis optimal,thentheinnovationdeparturesarenot correlatedin

time.

(xxxi) *** (fixed-lag Kalman smoother)Derive the equationsfor the 1-lag Kalman smoother, i.e. a

generalizationof theKF equationsin which theobservationsat both timesof thecurrentanalysis
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andof thenext oneareusedateachanalysisstep.Tip: extendtheKF controlvariableto includethe

model state at both analysis times.

APPENDIX D MAIN SYMBOLS

 model state vector

 true value of the model state i.e. perfect analysis

 background model state

 analysed model state

 observation vector

observationoperator(maps into the spaceby providing modelequivalentsof theobserved

values)

 linearized observation operator (in the vicinity of a predefined model state)

 background error covariances (estimation error covariance matrix of )

 analysis error covariances (estimation error covariance matrix of )

 observation error covariances (error covariance matrix of

 analysis gain matrix

 identity matrix

 cost function of the variational analysis

 background term of the cost function

 observation term of the cost function

 penalization term of the cost function
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