
METR 5303 – Lecture #9 

 

 

The Barnes Objective Analysis Procedure 

     

Reading:  Koch et al, (1983) paper (handed out);  Daley, p. 90-93. 

 

We will study the Barnes scheme in detail (2-3 lectures) because it is commonly used in research and software 

packages (e.g., GEMPAK;  McIDAS) for diagnostic analysis of meteorological data. 

 

A Barnes objective analysis refers to the use of a Gaussian filter as the distance-dependent weight function: 

 

        wm =  exp [ - r2
m /  ]   (1) 

 

where rm  is the distance between the mth observation and the grid point, and  is a parameter governing the shape 

of the resulting response function (see Fig. 3.3 in Daley). 

 

  has units of r2  (e.g., m2 if doing an analysis in x-y space), and should be related to the average spacing of the 

observations  (and also the data distribution if it is non-uniform). 

 

E.g., if have dense observations,  should become smaller so that there is a smaller weight wm  for a given rm  (i.e. – 

only data closest to grid point are weighted highly) 

 

The Barnes scheme can be designed to include (exclude) the scales you want (don’t want) to retain by the choice of 

  and number of scans. 

 



 



A response function for eq. (1) can be obtained analytically by assuming sinusoidal fields and continuous data 

(Barnes, 1973;  Pauley and Wu, 1990).  The response function for one pass is 

 

     D0   =   exp [ - 2 ]     (2) 

 

where is wavelength. 

 

Thus the analyzed field  g0 (i, j)  can be related to the original data field  f(x, y)  via 

 

   g0 (i, j)   =   D0 f(x, y)     (3) 

 

Figure 1 in Koch et al  is a plot of  D0  vs a normalized wavelength  *  =  /L,  where   L = 2n,  where n could 

be interpreted as the mean station separation.  The curves are for various values of the normalized weight 

parameter  00L
2 .   This figure shows how different wavelengths are filtered during the first pass as a 

function of the weight parameter.  The plot shows that we can get a fairly smooth analysis (short wavelengths are 

filtered out) for  *
01 or greater, which means that 02n)2. 



 
 



Barnes (1964) applied eq. (1) several times to allow the scheme to “recover” (retain) more amplitude in the 

medium scale waves that are overly smoothed in the first pass.  However, we still want the amplitude of the 2n 

wavelength to be near zero. 

 

Barnes (1973) and Koch et al (1983) show that we can obtain our “desired analysis” in 2 scans by modifying  0  

on the second pass via  10 , where  is a “convergence factor”,  0 <  < 1.  The smaller is, the closer one 

fits the observations. 

 

The analysis equation for this second pass is : 

 

   g1(i, j) = g0 (i, j) + D1 [ f(x, y) - g0(x, y) ]  (4) 

 

where the g0 (x, y)  is obtained by interpolating the g0(i, j) field from eq. (3) to the stations, and where  

 

    D1 = exp [ - 2 ]  = D0
   (5) 

 

is the response function for the modified weight function 

 

    w'
m = exp [ - r2

m /  ]    (6)

 

Since  0  <  0 w'
m  is smaller for any rm , and less weight is given to more distant observations than before, thus 

forcing the analysis closer to the nearby obs. 

 

Note, however, that D1 is not the total response to both passes.  To get the total response D1
* , we substitute eqs. (3) 

and (5) into (4) to get: 

 

 g1 (i, j) = D0 f(x, y)+ D
0 [ f(x, y) - D0 f(x, y)] 

 



where we have assumed for the last term that the response on the (x,y) data field is the same as on the (i, j) gridded 

field.   This can be rearranged to get 

 

 g1 (i, j)   =   D0 f(x,y) [ 1 +  D
 -  D0

 ]    

 

Therefore, 

 

  D1
*= D0 [ 1  + D

  -  D0
 ]    (7) 

 

The change in the response from the first to the 2nd pass for two different values of is shown in Fig. 3 in Koch et 

al.   Note that  means that the 2nd pass was made with no accelerated convergence.   The greatest increase in 

response occurs at the shorter wavelengths.  However, we want to make sure that we don’t significantly increase 

the response at the 2n wavelength, which is usually noisy.  Here, the increase is about 40%, which is worrisome; - 

ok if have accurate, well-distributed data;  not ok if not the case. 

 

Since  D1
*  depends on  , which we specify, and D0 , which is a function of  0, the main task w.r.t. designing the 

desired response is to devise a procedure to determine 0 . 

 

First, though, we summarize the Barnes analysis scheme as presented by Koch et al: 

 

1. Assuming we have no background field, the first pass is 
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where the weight function wm  is given by eq. (1), and M is the number of observations within the cutoff radius  Rc . 



 

2. Interpolate g0 (i, j)  to stations to get g0 (xm , ym )   

 

      3.  Compute the observation increment f '(xm, ym)   =  fm (xm, ym)  -  g0 (xm, ym) 

 

4. The second pass is then obtained from 
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 where the weight function is 

 

     w'
m = exp [ - r2

m /  ]   (10) 

  

with  0 <  < 1. 

 

Thus, control over what you want to accomplish with the Barnes analysis is obtained by a priori choices of 0 , 

x, Rc , and the number of passes. 

 

Tailoring the Barnes Scheme to Your Needs  (according to Koch et al, 1983) 

 

(a)  Choice of domain    

 

See text for discussion.  One important point is to choose your objective analysis domain to be smaller than the 

data domain. 

 



(b)  Calculation of n 

 

The mean distance between stations n plays an important role in the tailoring of the Barnes scheme.  In Koch et 

al, nc  is the value that one computes from your station data.   The quantity nr  is the spacing one obtains by 

assuming an even distribution of the M observations over the domain area A, which is given by 
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For example, if M = 100, nr  =  1/9 A1/2 ,  whereas the simple formula gives   1/10 A1/2 . 

 

If you have poor data distribution, then  nc  <<  nr ,  and a value of n  larger than  nc  should be selected.  E.g., 

if the distribution looks like: 

 

 
we have   nr  >  nc , and we would need to use a value closer to nr  to avoid excessive noise in the analysis if we 

were using only one value of  0However, we could do either of the following: 

 

(i) Produce two analyses, one with n = nr , and a second one just in the data dense region only with n 

= nc  in that region. 



 

(ii) Compute n at every grid point from nearby stations, thus changing  0at every grid point  (as well as 

the response function). 

 

 


