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METR 5303 – Lecture #2                        

 

Objective Analysis Fundamentals 

 

  

Definition:   Objective Analysis -  A procedure for obtaining estimates of irregularly-spaced field variables to 

points on a regular grid. 

 

This is usually in 2-D or 3-D space but could be in time.  

 

Objective analysis usually has additional, simultaneously-desired goals: 

 

1. Detection and suppression of noise in the data 

 

 We define noise as: 

 

(a) Measurement errors 

 

(i) Instrument errors 

(ii) “gross errors”   (e.g., miscoding;  transmission errors, etc.) 

(iii) Representativeness  (is point measurement representative of a desired area or volume?) 

 

(b) Features whose scale is less than twice the sampling interval  - i.e. – the Nyquist frequency or 

wavelength 

 

(c) Interpolation errors 

 

 Thus, we may desire to filter out this noise.  Also may filter to retain only scales appropriate for the problem. 
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2.   For multivariate analysis  (more than one variable analyzed simultaneously), we may desire that the fields are 

dynamically consistent.   For example, 

 

(a) V  and  should be in quasi-geostrophic balance  for larger-scale motions 

 

(b) Mass continuity should be preserved 

  

(c) Fields should be in balance with the model equations  (goal of 4DDA) 

 

Interpolation Basics 

 

1. Linear Interpolation 

 

 Consider the following “observations” y1 , y2 of the 1-D function  y  =  f(x) at points x1 ,  x2 : 

 

 
 

What is the value of  f(x)  at  x = xa ? 

 

The linear interpolation estimate is:        

 

  1
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Note:  One should always examine formulas to see how they work.  Here, we see if xa is close to x1 , the 2nd term is 

small and the answer is close to f(x1).   If xa is close to x2 , the coefficient is close to 1, the two f(x1)’s cancel, and 

the answer is close to f(x2), as desired. 

 

Class exercise:   Develop a formula for 2-D linear interpolation – Bilinear interpolation 

 

Use the grid shown to right and assume 4 height  

observations as shown at grid intersections.  

Develop a formula to obtain  Za(x, y).   

We will use this formula later. 

 

 

Note:   Equation (1) can also be written in the form: 
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Class exercise:   Prove this. 
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In eq. (2), 1 and x are basis functions for a linear model  -  part of a set of polynomial basis functions  1, x, x2 , x3 , 

etc. 

 

As another example, sin x,  cos x  are the basis functions for a Fourier Series 

 

Thus, in (2),  c0 , c1  are estimated parameters or coefficients that need to be determined. 

Equation (3) expressed those coefficients in terms of known values. 

   

The general form for eq. (3) is: 
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So, in eqs (2) and (3),  i  =  0 and 1,  and the coefficients  hij  are 
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The use of eqs (1) or (2) within  x1  <  x  <  x2  (the analysis domain) is interpolation 

 

The use of eqs (1) or (2) outside  x1  <  x  <  x2  is extrapolation  -  avoid at all costs! 

 

 

Note:  We need to realize that the function model (here linear) may be used incorrectly.  

 

Let  (x)  be the expected value  of  f(xa), i.e. , < f(xa)> .   If eq (2)  is not the “true model” for f(x), (that is, the 

actual field is not linear), then 
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   ( ) ( ) 0af x x   over the analysis domain, and  

 

we will have biased estimates of the signal. 

 

Note that   here represents the ensemble average over all possible realizations. 

 

Therefore, we have 2 sources of error to consider: 

 

(a) Observational error 

(b) Mis-specification of the function model 

 

It is often not possible to tell them apart;  need to minimize both. 

 

 

2.   Quadratic Interpolation 

 

 Consider the following diagram: 
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5 / 2

x

x

x

  

 

 

Let y = f(x)  be sampled at 3 points:  [ x  =  0, 1, 5/2 ].  Assume error-free observations  

 

or sample values at these points:   [ y = 2, 1, 2 ] or  f(0) = 2;  f(1) = 1;  f(5/2) = 2. 

 



6 

 

Problem:  How do we use the sample values (observations) to estimate y for other values of x? 

 

For example, here we will obtain a value for  f(2). 

 

Solution:    If f(x) is suitable “well-behaved”  (e.g., all derivatives exist, etc.),  f(x) can be represented by a power 

series expansion 
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       (1) 

 

 

[ Eq. (1) is a Taylor Series expansion about x = 0, or a Maclaurin Series.] 

 

If we truncate  eq. (1) at n = 2, we have the estimate 

 

  
2

( ) (0) '(0) ''(0)
2

x
f x f xf f      (2) 

 

Thus f (x)  will approach  f(x)  according to: 

 

(a) How close x is to the origin 

(b) Smallness of the higher-order derivatives 

 

We now rewrite (2) as 

 

   
2

0 1 2(x) +f a a x a x       (3) 
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which is a quadratic interpolating polynomial. 

 

We need to determine  a0 , a1 , a2.   We shall use the method of undetermined coefficients. 

 

From (3), we can write: 

 

 f  (0)  =  a0    [ = f(0)  since we assumed no error ] 

 

 f  (1)  =  a0 + a1 + a2       [ = f(1) ] 

 

 f  (5/2)  =  a0 + 5/2a1 +  25/4a2       [ = f(5/2) ] 

 

or, in matrix form: 

 

0

1

2

1 0 0 (0)

1 1 1 (1)

1 5/2 25/4 (2)

a f

a f

a f

  

           (4) 

or 

 

CA = F   

 

We can solve eq. (4) using Cramer’s Rule. 

 

Class exercise:   Do this!   Verify that   a0 = 2,  a1 = -5/3,  a2 = 2/3   so that eq. (3) is 

 

    25 2
( ) 2

2 3
f x x x  ,    (5) 
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and thus  f(2)  =  1 1/3. 

 

 

Now write eq. (3) in linear operator form: 

 

    
2

0

0
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k

f x c f x ）.     (6) 

 

We note that (6) is a linear combination of observed values  -  which are not linear in x. 

 

The coefficients are given by 
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      (7) 

 

 

Class Exercise:   Verify that (6) and (7) are equivalent to (5), and that f(2)  =   1 1/3. 

 

 

Note #1:   Since a2    0 in eq. (3), and the sample values were assumed to have no error, f(x) is not linear.  But, if 

sample values did have errors  (i.e. - not exactly = to 2, 1, 2), then the fact that a2    0  does not mean that the true 

function can not be linear. 
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Note #2:   f(x) could also be a cubic or higher order function, but we can only fit a quadratic function (or less) to 3 

sample points.  E.g., if f(x) were cubic, we would need at least 4 independent sample points to determine the 

coefficients of the function. 

 

Thus, recall the important rule that “the degree of the interpolating polynomial is one less than the number of 

independent sample points”. 

 

Suppose we had 27 sample points.   Would you want to fit a 26th order polynomial to the data? 

 

Answer is No!    One would probably be fitting noise in the data (overfitting) and the function would be overly 

“loopy”.  We will come back to this. 

 

Thus we usually will choose to solve over-determined analysis problems, where the number of points is greater 

than the order of the polynomial.  The least squares technique is one of these approaches. 

 

Note #3:   f(x) in general will not be quadratic.  For example, suppose the true field is the solid line in the diagram 

below, and the dashed line is what we estimated with eq. (5): 

 

 
Within the sampling interval – interpolation  -  our estimates are fair to good. 

 

Outside the sampling interval  -  extrapolation  -  our estimate are terrible. 
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[Expressions for these errors can be found in numerical analysis textbooks.] 

 

 

So, we have the following error trade-offs: 

 

 Low-order polynomials:  Smooth fields, but perhaps a poor fit 

 

 High-order polynomial:  More information (smaller scales) can be fit, but may be fitting noise in the data.    

 

The derivatives of the function may be noisy. 

 

 

Read Daley, p. 34-39.   Review least squares. 
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Polynomial Fitting: Lecture notes from CFD class: 
 

This is the second, most general method for generating finite difference expression. Here, we assume that the 

solution to the PDE can be approximated by a polynomial, and that the values at the mesh points are exact. We 

thus differentiate the polynomial to obtain expression for various derivatives. 

 

Assume that u(x) = a x2 + b x + c: 

 

 
Goal: Find a, b and c. Note that the grid spacing need not be uniform. 

 

Applying the polynomial to those three points gives 

 

ui-1 = a x2
i-1 + b xi-1 + c 

 

ui   = a x2
i + b xi + c 

 

ui+1 = a x2
i+1 + b xi+1 + c 
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Solve for a, b, c, we obtain 
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


  

      
    

      

  
  

  

 

 

Note: u(xi) = ui for i, i+1, i-1 (verify yourself). 

 

The above formula is often called a Lagrange Interpolation Polynomial and can be generalized to any order. 

 


