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C H A P T E R 5

The Planetary Boundary Layer

The planetary boundary layer is that portion of the atmosphere in which the
flow field is strongly influenced directly by interaction with the surface of the
earth. Ultimately this interaction depends on molecular viscosity. It is, however,
only within a few millimeters of the surface, where vertical shears are very intense,
that molecular diffusion is comparable to other terms in the momentum equation.
Outside this viscous sublayer molecular diffusion is not important in the boundary
layer equations for the mean wind, although it is still important for small-scale tur-
bulent eddies. However, viscosity still has an important indirect role; it causes the
velocity to vanish at the surface. As a consequence of this no-slip boundary con-
dition, even a fairly weak wind will cause a large-velocity shear near the surface,
which continually leads to the development of turbulent eddies. These turbulent
motions have spatial and temporal variations at scales much smaller than those
resolved by the meteorological observing network. Such shear-induced eddies,
together with convective eddies caused by surface heating, are very effective in
transferring momentum to the surface and transferring heat (latent and sensible)
away from the surface at rates many orders of magnitude faster than can be done
by molecular processes. The depth of the planetary boundary layer produced by
this turbulent transport may range from as little as 30 m in conditions of large
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116 5 the planetary boundary layer

static stability to more than 3 km in highly convective conditions. For average
midlatitude conditions the planetary boundary layer extends through the lowest
kilometer of the atmosphere and thus contains about 10% of the mass of the
atmosphere.

The dynamical structure of the flow in the planetary boundary layer is not pro-
duced directly by viscosity. Rather, it is largely determined by the fact that the
atmospheric flow is turbulent. In the free atmosphere (i.e., the region above the
planetary boundary layer), this turbulence can be ignored in an approximate treat-
ment of synoptic-scale motions, except perhaps in the vicinity of jet streams, fronts,
and convective clouds. However, in the boundary layer the dynamical equations
of the previous chapters must be modified to properly represent the effects of
turbulence.

5.1 ATMOSPHERIC TURBULENCE

Turbulent flow contains irregular quasi-random motions spanning a continuous
spectrum of spatial and temporal scales. Such eddies cause nearby air parcels to
drift apart and thus mix properties such as momentum and potential temperature
across the boundary layer. Unlike the large-scale rotational flows discussed in
earlier chapters, which have depth scales that are small compared to their horizontal
scales, the turbulent eddies of concern in the planetary boundary layer tend to have
similar scales in the horizontal and vertical. The maximum eddy length scale is thus
limited by the boundary layer depth to be about 103 m. The minimum length scale
(10−3 m) is that of the smallest eddies that can exist in the presence of diffusion
by molecular friction.

Even when observations are taken with very short temporal and spatial separa-
tions, a turbulent flow will always have scales that are unresolvable because they
have frequencies greater than the observation frequency and spatial scales smaller
than the scale of separation of the observations. Outside the boundary layer, in the
free atmosphere, the problem of unresolved scales of motion is usually not a seri-
ous one for the diagnosis or forecasting of synoptic and larger scale circulations
(although it is crucial for the mesoscale circulations discussed in Chapter 9). The
eddies that contain the bulk of the energy in the free atmosphere are resolved by
the synoptic network. However, in the boundary layer, unresolved turbulent eddies
are of critical importance. Through their transport of heat and moisture away from
the surface they maintain the surface energy balance, and through their transport of
momentum to the surface they maintain the momentum balance. The latter process
dramatically alters the momentum balance of the large-scale flow in the bound-
ary layer so that geostrophic balance is no longer an adequate approximation to
the large-scale wind field. It is this aspect of boundary layer dynamics that is of
primary importance for dynamical meteorology.
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5.1.1 The Boussinesq Approximation

The basic state (standard atmosphere) density varies across the lowest kilometer of
the atmosphere by only about 10%, and the fluctuating component of density devi-
ates from the basic state by only a few percentage points. These circumstances
might suggest that boundary layer dynamics could be modeled by setting den-
sity constant and using the theory of homogeneous incompressible fluids. This is,
however, generally not the case. Density fluctuations cannot be totally neglected
because they are essential for representing the buoyancy force (see the discussion
in Section 2.7.3).

Nevertheless, it is still possible to make some important simplifications in
dynamical equations for application in the boundary layer. The Boussinesq approx-
imation is a form of the dynamical equations that is valid for this situation. In this
approximation, density is replaced by a constant mean value,ρ0, everywhere except
in the buoyancy term in the vertical momentum equation. The horizontal momen-
tum equations (2.24) and (2.25) can then be expressed in Cartesian coordinates as

Du

Dt
= − 1

ρ0

∂p

∂x
+ f v + Frx (5.1)

and
Dv

Dt
= − 1

ρ0

∂p

∂y
− f u + Fry (5.2)

while, with the aid of (2.28) and (2.51) the vertical momentum equation becomes

Dw

Dt
= − 1

ρ0

∂p

∂z
+ g

θ

θ0
+ Frz (5.3)

Here, as in Section 2.7.3, θ designates the departure of potential temperature from
its basic state value θ0(z).1 Thus, the total potential temperature field is given by
θtot = θ(x, y, z, t)+ θ0(z), and the adiabatic thermodynamic energy equation has
the form of (2.54):

Dθ

Dt
= −w

dθ0

dz
(5.4)

Finally, the continuity equation (2.34) under the Boussinesq approximation is

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (5.5)

1 The reason that we have not used the notation θ ′ to designate the fluctuating part of the potential
temperature field will become apparent in Section 5.1.2.
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5.1.2 Reynolds Averaging

In a turbulent fluid, a field variable such as velocity measured at a point generally
fluctuates rapidly in time as eddies of various scales pass the point. In order that
measurements be truly representative of the large-scale flow, it is necessary to
average the flow over an interval of time long enough to average out small-scale
eddy fluctuations, but still short enough to preserve the trends in the large-scale
flow field. To do this we assume that the field variables can be separated into
slowly varying mean fields and rapidly varying turbulent components. Following
the scheme introduced by Reynolds, we then assume that for any field variables,
w and θ , for example, the corresponding means are indicated by overbars and the
fluctuating components by primes. Thus, w = w+w′ and θ = θ+θ ′. By definition,
the means of the fluctuating components vanish; the product of a deviation with a
mean also vanishes when the time average is applied. Thus,

w′θ = w′ θ = 0

where we have used the fact that a mean variable is constant over the period of
averaging. The average of the product of deviation components (called the covari-
ance) does not generally vanish. Thus, for example, if on average the turbulent
vertical velocity is upward where the potential temperature deviation is positive
and downward where it is negative, the product w′θ ′ is positive and the variables
are said to be correlated positively. These averaging rules imply that the average
of the product of two variables will be the product of the average of the means plus
the product of the average of the deviations:

wθ = (w + w′)(θ + θ ′) = wθ + w′θ ′

Before applying the Reynolds decomposition to (5.1)–(5.4), it is convenient to
rewrite the total derivatives in each equation in flux form. For example, the term
on the left in (5.1) may be manipulated with the aid of the continuity equation (5.5)
and the chain rule of differentiation to yield

Du

Dt
= ∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
+ u

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)

= ∂u

∂t
+ ∂u2

∂x
+ ∂uv

∂y
+ ∂uw

∂z
(5.6)

Separating each dependent variable into mean and fluctuating parts, substituting
into (5.6), and averaging then yields

Du

Dt
= ∂ū

∂t
+ ∂

∂x

(
ūū + u′u′

)
+ ∂

∂y

(
ūv̄ + u′v′

)
+ ∂

∂z

(
ūw̄ + u′w′

)
(5.7)
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Noting that the mean velocity fields satisfy the continuity equation (5.5), we can
rewrite (5.7), as

Du

Dt
= D̄ū

Dt
+ ∂

∂x

(
u′u′

)
+ ∂

∂y

(
u′v′

)
+ ∂

∂z

(
u′w′

)
(5.8)

where
D

Dt
= ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z

is the rate of change following the mean motion.
The mean equations thus have the form

D̄ū

Dt
= − 1

ρ0

∂p̄

∂x
+ f v̄ −

[
∂u′u′

∂x
+ ∂u′v′

∂y
+ ∂u′w′

∂z

]

+ F̄rx (5.9)

D̄v̄

Dt
= − 1

ρ0

∂p̄

∂y
− f ū −

[
∂u′v′

∂x
+ ∂v′v′

∂y
+ ∂v′w′

∂z

]

+ F̄ry (5.10)

D̄w̄

Dt
= − 1

ρ0

∂p̄

∂z
+ g

θ̄

θ0
−
[
∂u′w′

∂x
+ ∂v′w′

∂y
+ ∂w′w′

∂z

]

+ F̄rz (5.11)

D̄θ̄

Dt
= −w̄

dθ0

dz
−
[
∂u′θ ′

∂x
+ ∂v′θ ′

∂y
+ ∂w′θ ′

∂z

]

(5.12)

∂ū

∂x
+ ∂ v̄

∂y
+ ∂w̄

∂z
= 0 (5.13)

The various covariance terms in square brackets in (5.9)–(5.12) represent turbu-
lent fluxes. For example, w′θ ′ is a vertical turbulent heat flux in kinematic form.
Similarly w′u′ = u′w′ is a vertical turbulent flux of zonal momentum. For many
boundary layers the magnitudes of the turbulent flux divergence terms are of the
same order as the other terms in (5.9)–(5.12). In such cases, it is not possible to
neglect the turbulent flux terms even when only the mean flow is of direct interest.
Outside the boundary layer the turbulent fluxes are often sufficiently weak so that
the terms in square brackets in (5.9)–(5.12) can be neglected in the analysis of
large-scale flows. This assumption was implicitly made in Chapters 3 and 4.

The complete equations for the mean flow (5.9)–(5.13), unlike the equations for
the total flow (5.1)–(5.5), and the approximate equations of Chapters 3 and 4, are
not a closed set, as in addition to the five unknown mean variables u, v, w, θ , p,

there are unknown turbulent fluxes. To solve these equations, closure assump-
tions must be made to approximate the unknown fluxes in terms of the five
known mean state variables. Away from regions with horizontal inhomogeneities
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(e.g., shorelines, towns, forest edges), we can simplify by assuming that the tur-
bulent fluxes are horizontally homogeneous so that it is possible to neglect the
horizontal derivative terms in square brackets in comparison to the terms involving
vertical differentiation.

5.2 TURBULENT KINETIC ENERGY

Vortex stretching and twisting associated with turbulent eddies always tend to
cause turbulent energy to flow toward the smallest scales, where it is dissipated
by viscous diffusion. Thus, there must be continuing production of turbulence if
the turbulent kinetic energy is to remain statistically steady. The primary source
of boundary layer turbulence depends critically on the structure of the wind and
temperature profiles near the surface. If the lapse rate is unstable, boundary layer
turbulence is convectively generated. If it is stable, then instability associated with
wind shear must be responsible for generating turbulence in the boundary layer.
The comparative roles of these processes can best be understood by examining the
budget for turbulent kinetic energy.

To investigate the production of turbulence, we subtract the component mean
momentum equations (5.9)–(5.11) from the corresponding unaveraged equations
(5.1)–(5.3). We then multiply the results by u′, v′, w′, respectively, add the resulting
three equations, and average to obtain the turbulent kinetic energy equation. The
complete statement of this equation is quite complicated, but its essence can be
expressed symbolically as

D̄ (T KE)

Dt
= MP + BP L + T R − ε (5.14)

where T KE ≡ (u′2 + v′2 + w′2)/2 is the turbulent kinetic energy per unit mass,
MP is the mechanical production, BPL is the buoyant production or loss, TR des-
ignates redistribution by transport and pressure forces, and ε designates frictional
dissipation. ε is always positive, reflecting the dissipation of the smallest scales of
turbulence by molecular viscosity.

The buoyancy term in (5.14) represents a conversion of energy between mean
flow potential energy and turbulent kinetic energy. It is positive for motions that
lower the center of mass of the atmosphere and negative for motions that raise it.
The buoyancy term has the form2

BP L ≡ w′θ ′ (g
/
θ0
)

2 In practice, buoyancy in the boundary layer is modified by the presence of water vapor, which has a
density significantly lower than that of dry air. The potential temperature should be replaced by virtual
potential temperature in (5.14) in order to include this effect. (See, for example, Curry and Webster,
1999, p.67.)
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Fig. 5.1 Correlation between vertical velocity and potential temperature perturbations for upward or
downward parcel displacements when the mean potential temperature θ0(z) decreases with
height.

Positive buoyancy production occurs when there is heating at the surface so that
an unstable temperature lapse rate (see Section 2.7.2) develops near the ground
and spontaneous convective overturning can occur. As shown in the schematic of
Fig. 5.1, convective eddies have positively correlated vertical velocity and potential
temperature fluctuations and hence provide a source of turbulent kinetic energy and
positive heat flux. This is the dominant source in a convectively unstable boundary
layer. For a statically stable atmosphere, BPL is negative, which tends to reduce
or eliminate turbulence.

For both statically stable and unstable boundary layers, turbulence can be gen-
erated mechanically by dynamical instability due to wind shear. This process is
represented by the mechanical production term in (5.14), which represents a con-
version of energy between mean flow and turbulent fluctuations. This term is
proportional to the shear in the mean flow and has the form

MP ≡ −u′w′ ∂ū

∂z
− v′w′ ∂ v̄

∂z
(5.15)

MP is positive when the momentum flux is directed down the gradient of the
mean momentum. Thus, if the mean vertical shear near the surface is westerly
(∂ū

/
∂z > 0), then u′w′ < 0 for MP > 0.

In a statically stable layer, turbulence can exist only if mechanical production is
large enough to overcome the damping effects of stability and viscous dissipation.
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This condition is measured by a quantity called the flux Richardson number. It is
defined as

Rf ≡ −BP L/MP

If the boundary layer is statically unstable, then Rf < 0 and turbulence is sus-
tained by convection. For stable conditions, Rf will be greater than zero. Observa-
tions suggest that only when Rf is less than about 0.25 (i.e., mechanical production
exceeds buoyancy damping by a factor of 4) is the mechanical production intense
enough to sustain turbulence in a stable layer. Since MP depends on the shear, it
always becomes large close enough to the surface. However, as the static stability
increases, the depth of the layer in which there is net production of turbulence
shrinks. Thus, when there is a strong temperature inversion, such as produced by
nocturnal radiative cooling, the boundary layer depth may be only a few decame-
ters, and vertical mixing is strongly suppressed.

5.3 PLANETARY BOUNDARY LAYER MOMENTUM EQUATIONS

For the special case of horizontally homogeneous turbulence above the viscous
sublayer, molecular viscosity and horizontal turbulent momentum flux divergence
terms can be neglected. The mean flow horizontal momentum equations (5.9) and
(5.10) then become

D̄ū

Dt
= − 1

ρ0

∂p̄

∂x
+ f v̄ − ∂u′w′

∂z
(5.16)

D̄v̄

Dt
= − 1

ρ0

∂p̄

∂y
− f ū − ∂v′w′

∂z
(5.17)

In general, (5.16) and (5.17) can only be solved for u and v if the vertical distribution
of the turbulent momentum flux is known. Because this depends on the structure
of the turbulence, no general solution is possible. Rather, a number of approximate
semiempirical methods are used.

For midlatitude synoptic-scale motions, Section 2.4 showed that to a first approx-
imation the inertial acceleration terms [the terms on the left in (5.16) and (5.17)]
could be neglected compared to the Coriolis force and pressure gradient force
terms. Outside the boundary layer, the resulting approximation was then simply
geostrophic balance. In the boundary layer the inertial terms are still small com-
pared to the Coriolis force and pressure gradient force terms, but the turbulent
flux terms must be included. Thus, to a first approximation, planetary boundary
layer equations express a three-way balance among the Coriolis force, the pressure
gradient force, and the turbulent momentum flux divergence:

f
(
v̄ − v̄g

)
− ∂u′w′

∂z
= 0 (5.18)
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−f
(
ū − ūg

)
− ∂v′w′

∂z
= 0 (5.19)

where (2.23) is used to express the pressure gradient force in terms of geostrophic
velocity.

5.3.1 Well-Mixed Boundary Layer

If a convective boundary layer is topped by a stable layer, turbulent mixing can
lead to formation of a well-mixed layer. Such boundary layers occur commonly
over land during the day when surface heating is strong and over oceans when the
air near the sea surface is colder than the surface water temperature. The tropical
oceans typically have boundary layers of this type.

In a well-mixed boundary layer, the wind speed and potential temperature are
nearly independent of height, as shown schematically in Fig. 5.2, and to a first
approximation it is possible to treat the layer as a slab in which the velocity and
potential temperature profiles are constant with height and turbulent fluxes vary
linearly with height. For simplicity, we assume that the turbulence vanishes at the
top of the boundary layer. Observations indicate that the surface momentum flux
can be represented by a bulk aerodynamic formula3

(
u′w′

)

s
= −Cd

∣∣V
∣∣ ū, and

(
v′w′

)

s
= −Cd

∣∣V
∣∣ v̄

Fig. 5.2 Mean potential temperature, θ0, and mean zonal wind, U , profiles in a well-mixed boundary
layer. Adapted from Stull (1988).

3 The turbulent momentum flux is often represented in terms of an “eddy stress” by defining, for
example, τex = ρou′w′. We prefer to avoid this terminology to eliminate possible confusion with
molecular friction.
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where Cd is a nondimensional drag coefficient, |V| = (u2 + v2)1/2, and the
subscript s denotes surface values (referred to the standard anemometer height).
Observations show that Cd is of order 1.5 ×10–3 over oceans, but may be several
times as large over rough ground.

The approximate planetary boundary layer equations (5.18) and (5.19) can then
be integrated from the surface to the top of the boundary layer at z = h to give

f
(
v̄ − v̄g

)
= −

(
u′w′

)

s

/
h = Cd

∣∣V
∣∣ ū
/

h (5.20)

−f
(
ū − ūg

)
= −

(
v′w′

)

s

/
h = Cd

∣∣V
∣∣ v̄
/

h (5.21)

Without loss of generality we can choose axes such that vg = 0. Then (5.20) and
(5.21) can be rewritten as

v̄ = κs

∣∣V
∣∣ ū; ū = ūg − κs

∣∣V
∣∣ v̄; (5.22)

where κs ≡ Cd

/
(f h) . Thus, in the mixed layer the wind speed is less than

the geostrophic speed and there is a component of motion directed toward lower
pressure (i.e., to the left of the geostrophic wind in the Northern Hemisphere and
to the right in the Southern Hemisphere) whose magnitude depends on κs . For
example, if ūg = 10 m s–1 and κs = 0.05 m–1 s, then ū = 8.28 m s–1, v̄ = 3.77
m s–1, and

∣∣V
∣∣ = 9.10 m s–1 at all heights within this idealized slab mixed layer.

It is the work done by the flow toward lower pressure that balances the frictional
dissipation at the surface. Because boundary layer turbulence tends to reduce wind
speeds, the turbulent momentum flux terms are often referred to as boundary layer
friction. It should be kept in mind, however, that the forces involved are due to
turbulence, not molecular viscosity.

Qualitatively, the cross isobar flow in the boundary layer can be understood as
a direct result of the three-way balance among the pressure gradient force, the
Coriolis force, and turbulent drag:

f k × V = − 1
ρ0

∇p̄ − Cd

h

∣∣V
∣∣V (5.23)

This balance is illustrated in Fig. 5.3. Because the Coriolis force is always normal to
the velocity and the turbulent drag is a retarding force, their sum can exactly balance
the pressure gradient force only if the wind is directed toward lower pressure.
Furthermore, it is easy to see that as the turbulent drag becomes increasingly
dominant, the cross isobar angle must increase.

5.3.2 The Flux–Gradient Theory

In neutrally or stably stratified boundary layers, the wind speed and direction vary
significantly with height. The simple slab model is no longer appropriate; some
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Fig. 5.3 Balance of forces in the well-mixed planetary boundary layer: P designates the pressure
gradient force, Co the Coriolis force, and FT the turbulent drag.

means is needed to determine the vertical dependence of the turbulent momentum
flux divergence in terms of mean variables in order to obtain closed equations for
the boundary layer variables. The traditional approach to this closure problem is
to assume that turbulent eddies act in a manner analogous to molecular diffusion
so that the flux of a given field is proportional to the local gradient of the mean. In
this case the turbulent flux terms in (5.18) and (5.19) are written as

u′w′ = −Km

(
∂ū

∂z

)
; v′w′ = −Km

(
∂ v̄

∂z

)

and the potential temperature flux can be written as

θ ′w′ = −Kh

(
∂θ̄

∂z

)

where Km(m2s−1) is the eddy viscosity coefficient and Khis the eddy diffusivity
of heat. This closure scheme is often referred to as K theory.

The K theory has many limitations. Unlike the molecular viscosity coefficient,
eddy viscosities depend on the flow rather than the physical properties of the
fluid and must be determined empirically for each situation. The simplest models
have assumed that the eddy exchange coefficient is constant throughout the flow.
This approximation may be adequate for estimating the small-scale diffusion of
passive tracers in the free atmosphere. However, it is a very poor approximation
in the boundary layer where the scales and intensities of typical turbulent eddies
are strongly dependent on the distance to the surface as well as the static stability.
Furthermore, in many cases the most energetic eddies have dimensions comparable
to the boundary layer depth, and neither the momentum flux nor the heat flux is
proportional to the local gradient of the mean. For example, in much of the mixed
layer, heat fluxes are positive even though the mean stratification may be very close
to neutral.
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5.3.3 The Mixing Length Hypothesis

The simplest approach to determining a suitable model for the eddy diffusion coef-
ficient in the boundary layer is based on the mixing length hypothesis introduced
by the famous fluid dynamicist L. Prandtl. This hypothesis assumes that a parcel
of fluid displaced vertically will carry the mean properties of its original level for
a characteristic distance ξ ′ and then will mix with its surroundings just as an aver-
age molecule travels a mean free path before colliding and exchanging momentum
with another molecule. By further analogy to the molecular mechanism, this dis-
placement is postulated to create a turbulent fluctuation whose magnitude depends
on ξ ′ and the gradient of the mean property. For example,

θ ′ = −ξ ′ ∂θ̄
∂z

; u′ = −ξ ′ ∂ū

∂z
; v′ = −ξ ′ ∂ v̄

∂z

where it must be understood that ξ ′ > 0 for upward parcel displacement and ξ ′ < 0
for downward parcel displacement. For a conservative property, such as potential
temperature, this hypothesis is reasonable provided that the eddy scales are small
compared to the mean flow scale or that the mean gradient is constant with height.
However, the hypothesis is less justified in the case of velocity, as pressure gradient
forces may cause substantial changes in the velocity during an eddy displacement.

Nevertheless, if we use the mixing length hypothesis, the vertical turbulent flux
of zonal momentum can be written as

−u′w′ = w′ξ ′ ∂ū

∂z
(5.24)

with analogous expressions for the momentum flux in the meridional direction
and the potential temperature flux. In order to estimate w′ in terms of mean fields,
we assume that the vertical stability of the atmosphere is nearly neutral so that
buoyancy effects are small. The horizontal scale of the eddies should then be
comparable to the vertical scale so that |w′| ∼ |V′| and we can set

w′ ≈ ξ ′
∣∣∣∣∣
∂V
∂z

∣∣∣∣∣

where V′ and V designate the turbulent and mean parts of the horizontal velocity
field, respectively. Here the absolute value of the mean velocity gradient is needed
because if ξ ′ > 0, then w > 0 (i.e., upward parcel displacements are associated
with upward eddy velocities). Thus the momentum flux can be written

−u′w′ = ξ ′2
∣∣∣∣∣
∂V
∂z

∣∣∣∣∣
∂ū

∂z
= Km

∂ū

∂z
(5.25)
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where the eddy viscosity is now defined as Km = ξ ′2 ∣∣∂V
/
∂z
∣∣ = ℓ2

∣∣∂V
/
∂z
∣∣

and the mixing length,

ℓ ≡
(
ξ ′2
)1/2

is the root mean square parcel displacement, which is a measure of average eddy
size. This result suggests that larger eddies and greater shears induce greater tur-
bulent mixing.

5.3.4 The Ekman Layer

If the flux-gradient approximation is used to represent the turbulent momentum
flux divergence terms in (5.18) and (5.19), and the value of Km is taken to be
constant, we obtain the equations of the classical Ekman layer:

Km
∂2u

∂z2 + f
(
v − vg

)
= 0 (5.26)

Km
∂2v

∂z2 − f
(
u − ug

)
= 0 (5.27)

where we have omitted the overbars because all fields are Reynolds averaged.
The Ekman layer equations (5.26) and (5.27) can be solved to determine the

height dependence of the departure of the wind field in the boundary layer from
geostrophic balance. In order to keep the analysis as simple as possible, we assume
that these equations apply throughout the depth of the boundary layer. The bound-
ary conditions on u and v then require that both horizontal velocity components
vanish at the ground and approach their geostrophic values far from the ground:

u = 0, v = 0 at z = 0
u → ug , v → vg as z → ∞ (5.28)

To solve (5.26) and (5.27), we combine them into a single equation by first mul-
tiplying (5.27) by i = (−1)1/2 and then adding the result to (5.26) to obtain a
second-order equation in the complex velocity, (u + iv):

Km
∂2 (u + iv)

∂z2 − if (u + iv) = −if
(
ug + ivg

)
(5.29)

For simplicity, we assume that the geostrophic wind is independent of height and
that the flow is oriented so that the geostrophic wind is in the zonal direction
(vg = 0). Then the general solution of (5.29) is

(u + iv) = A exp
[
(if/Km)1/2 z

]
+ B exp

[
− (if/Km)1/2 z

]
+ ug (5.30)
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It can be shown that
√

i = (1 + i) /
√

2. Using this relationship and applying the
boundary conditions of (5.28), we find that for the Northern Hemisphere (f > 0),
A = 0 and B = −ug. Thus

u + iv = −ug exp
[
−γ (1 + i) z

]
+ ug

where γ = (f/2Km)1/2.
Applying the Euler formula exp(−iθ) = cos θ − isin θ and separating the real

from the imaginary part, we obtain for the Northern Hemisphere

u = ug

(
1 − e−γ z cos γ z

)
, v = uge−γ z sin γ z (5.31)

This solution is the famous Ekman spiral named for the Swedish oceanographer
V. W. Ekman, who first derived an analogous solution for the surface wind drift
current in the ocean. The structure of the solution (5.31) is best illustrated by a
hodograph as shown in Fig. 5.4, where the zonal and meridional components of
the wind are plotted as functions of height. The heavy solid curve traced out on
Fig. 5.4 connects all the points corresponding to values of u and v in (5.31) for
values of γ z increasing as one moves away from the origin along the spiral.Arrows
show the velocities for various values of γ z marked at the arrow points. When
z = π/γ , the wind is parallel to and nearly equal to the geostrophic value. It is
conventional to designate this level as the top of the Ekman layer and to define the
layer depth as De ≡ π/γ .

Observations indicate that the wind approaches its geostrophic value at about
1 km above the surface. Letting De = 1 km and f = 10−4 s−1, the definition
of γ implies that Km ≈ 5 m2 s−1. Referring back to (5.25) we see that for a
characteristic boundary layer velocity shear of |δV/δz| ∼ 5×10−3 s−1, this value
of Km implies a mixing length of about 30 m, which is small compared to the depth
of the boundary layer, as it should be if the mixing length concept is to be useful.

Qualitatively the most striking feature of the Ekman layer solution is that, like
the mixed layer solution of Section 5.3.1, it has a boundary layer wind component

Fig. 5.4 Hodograph of wind components in the Ekman spiral solution. Arrows show velocity vectors
for several levels in the Ekman layer, whereas the spiral curve traces out the velocity variation
as a function of height. Points labeled on the spiral show the values of γ z, which is a
nondimensional measure of height.
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directed toward lower pressure. As in the mixed layer case, this is a direct result of
the three-way balance among the pressure gradient force, the Coriolis force, and
the turbulent drag.

The ideal Ekman layer discussed here is rarely, if ever, observed in the atmo-
spheric boundary layer. Partly this is because turbulent momentum fluxes are usu-
ally not simply proportional to the gradient of the mean momentum. However,
even if the flux–gradient model were correct, it still would not be proper to assume
a constant eddy viscosity coefficient, as in reality Km must vary rapidly with height
near the ground. Thus, the Ekman layer solution should not be carried all the way
to the surface.

5.3.5 The Surface Layer

Some of the inadequacies of the Ekman layer model can be overcome if we dis-
tinguish a surface layer from the remainder of the planetary boundary layer. The
surface layer, whose depth depends on stability, but is usually less than 10% of the
total boundary layer depth, is maintained entirely by vertical momentum transfer
by the turbulent eddies; it is not directly dependent on the Coriolis or pressure gra-
dient forces. Analysis is facilitated by supposing that the wind close to the surface
is directed parallel to the x axis. The kinematic turbulent momentum flux can then
be expressed in terms of a friction velocity, u∗, which is defined as4

u2
∗ ≡

∣∣∣(u′w′)s

∣∣∣

Measurements indicate that the magnitude of the surface momentum flux is of
the order 0.1 m2 s−2. Thus the friction velocity is typically of the order 0.3 m s−1.

According to the scale analysis in Section 2.4, the Coriolis and pressure gradient
force terms in (5.16) have magnitudes of about 10−3 m s−2 in midlatitudes. The
momentum flux divergence in the surface layer cannot exceed this magnitude or
it would be unbalanced. Thus, it is necessary that

δ
(
u2

∗
)

δz
≤ 10−3 m s−2

For δz = 10 m, this implies that δ(u2
∗) ≤ 10−2 m2 s−2, so that the change in the

vertical momentum flux in the lowest 10 m of the atmosphere is less than 10% of
the surface flux. To a first approximation it is then permissible to assume that in
the lowest several meters of the atmosphere the turbulent flux remains constant at
its surface value, so that with the aid of (5.25)

Km
∂ū

∂z
= u2

∗ (5.32)

4 Thus the surface eddy stress (see footnote 3) is equal to ρ0u2∗.
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where we have parameterized the surface momentum flux in terms of the eddy
viscosity coefficient. In applying Km in the Ekman layer solution, we assumed a
constant value throughout the boundary layer. Near the surface, however, the verti-
cal eddy scale is limited by the distance to the surface. Thus, a logical choice for the
mixing length is ℓ = kz where k is a constant. In that case Km = (kz)2

∣∣∂ū
/
∂z
∣∣.

Substituting this expression into (5.32) and taking the square root of the result
gives

∂ū
/
∂z = u∗/(kz) (5.33)

Integrating with respect to z yields the logarithmic wind profile

ū =
(
u∗
/

k
)

ln
(
z
/

z0
)

(5.34)

where z0, the roughness length, is a constant of integration chosen so that ū = 0
at z = z0. The constant k in (5.34) is a universal constant called von Karman’s
constant, which has an experimentally determined value of k ≈ 0.4. The roughness
length z0 varies widely depending on the physical characteristics of the surface.
For grassy fields, typical values are in the range of 1−4 cm. Although a number of
assumptions are required in the derivation of (5.34), many experimental programs
have shown that the logarithmic profile provides a generally satisfactory fit to
observed wind profiles in the surface layer.

5.3.6 The Modified Ekman Layer

As pointed out earlier, the Ekman layer solution is not applicable in the surface
layer. A more satisfactory representation for the planetary boundary layer can be
obtained by combining the logarithmic surface layer profile with the Ekman spiral.
In this approach the eddy viscosity coefficient is again treated as a constant, but
(5.29) is applied only to the region above the surface layer and the velocity and
shear at the bottom of the Ekman layer are matched to those at the top of the
surface layer. The resulting modified Ekman spiral provides a somewhat better fit
to observations than the classical Ekman spiral. However, observed winds in the
planetary boundary layer generally deviate substantially from the spiral pattern.
Both transience and baroclinic effects (i.e., vertical shear of the geostrophic wind in
the boundary layer) may cause deviations from the Ekman solution. However, even
in steady-state barotropic situations with near neutral static stability, the Ekman
spiral is seldom observed.

It turns out that the Ekman layer wind profile is generally unstable for a neutrally
buoyant atmosphere. The circulations that develop as a result of this instability have
horizontal and vertical scales comparable to the depth of the boundary layer. Thus,
it is not possible to parameterize them by a simple flux–gradient relationship. How-
ever, these circulations do in general transport considerable momentum vertically.
The net result is usually to decrease the angle between the boundary layer wind
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Fig. 5.5 Mean wind hodograph for Jacksonville, Florida (∼= 30˚ N), April 4, 1968 (solid line) com-
pared with the Ekman spiral (dashed line) and the modified Ekman spiral (dash-dot line)
computed with De ∼= 1200 m. Heights are shown in meters. (Adapted from Brown, 1970.
Reproduced with permission of the American Meteorological Society.)

and the geostrophic wind from that characteristic of the Ekman spiral. A typical
observed wind hodograph is shown in Fig. 5.5. Although the detailed structure is
rather different from the Ekman spiral, the vertically integrated horizontal mass
transport in the boundary layer is still directed toward lower pressure. As shown
in the next section, this fact is of primary importance for synoptic and larger scale
motions.

5.4 SECONDARY CIRCULATIONS AND SPIN DOWN

Both the mixed-layer solution (5.22) and the Ekman spiral solution (5.31) indicate
that in the planetary boundary layer the horizontal wind has a component directed
toward lower pressure. As suggested by Fig. 5.6, this implies mass convergence in
a cyclonic circulation and mass divergence in an anticyclonic circulation, which
by mass continuity requires vertical motion out of and into the boundary layer,
respectively. In order to estimate the magnitude of this induced vertical motion,
we note that if vg = 0 the cross isobaric mass transport per unit area at any level
in the boundary layer is given by ρ0v. The net mass transport for a column of unit
width extending vertically through the entire layer is simply the vertical integral
of ρ0v. For the mixed layer, this integral is simply ρ0vh(kg m−1 s−1), where h is
the layer depth. For the Ekman spiral, it is given by

M =
∫ De

0
ρ0vdz =

∫ De

0
ρ0ug exp(−πz/De) sin(πz/De)dz (5.35)

where De = π/γ is the Ekman layer depth defined in Section 5.3.4.
Integrating the mean continuity equation (5.13) through the depth of the bound-

ary layer gives

w(De) = −
∫ De

0

(
∂u

∂x
+ ∂v

∂y

)
dz (5.36)
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Fig. 5.6 Schematic surface wind pattern (arrows) associated with high- and low-pressure centers in
the Northern Hemisphere. Isobars are shown by thin lines, and L and H designate high- and
low-pressure centers, respectively. After Stull (1988).

where we have assumed that w(0) = 0. Assuming again that vg = 0 so that ug is
independent of x, we find after substituting from (5.31) into (5.36) and comparing
with (5.35) that the mass transport at the top of the Ekman layer is given by

ρ0w(De) = −∂M

∂y
(5.37)

Thus, the mass flux out of the boundary layer is equal to the convergence of the
cross isobar mass transport in the layer. Noting that −∂ug/∂y = ζg is just the
geostrophic vorticity in this case, we find after integrating (5.35) and substituting
into (5.37) that 5

w(De) = ζg

(
1

2γ

)
= ζg

∣∣∣∣
Km

2f

∣∣∣∣
1/2 ( f

|f |

)
(5.38)

where we have neglected the variation of density with height in the boundary layer
and have assumed that 1 + e-π ≈ 1. Hence, we obtain the important result that the
vertical velocity at the top of the boundary layer is proportional to the geostrophic
vorticity. In this way the effect of boundary layer fluxes is communicated directly
to the free atmosphere through a forced secondary circulation that usually dom-
inates over turbulent mixing. This process is often referred to as boundary layer
pumping. It only occurs in rotating fluids and is one of the fundamental distinctions
between rotating and nonrotating flow. For a typical synoptic-scale system with
ζg ∼ 10−5 s−1, f ∼ 10−4 s−1, and De ∼ 1 km, the vertical velocity given by
(5.38) is of the order of a few millimeters per second.

An analogous boundary layer pumping is responsible for the decay of the circu-
lation created when a cup of tea is stirred. Away from the bottom and sides of the

5 The ratio of the Coriolis parameter to its absolute value is included so that the formula will be
valid in both hemispheres.



January 27, 2004 9:4 Elsevier/AID aid

5.4 secondary circulations and spin down 133

cup there is an approximate balance between the radial pressure gradient and the
centrifugal force of the spinning fluid. However, near the bottom, viscosity slows
the motion and the centrifugal force is not sufficient to balance the radial pressure
gradient. (Note that the radial pressure gradient is independent of depth, as water
is an incompressible fluid.) Therefore, radial inflow takes place near the bottom
of the cup. Because of this inflow, the tea leaves always are observed to cluster
near the center at the bottom of the cup if the tea has been stirred. By continuity of
mass, the radial inflow in the bottom boundary layer requires upward motion and a
slow compensating outward radial flow throughout the remaining depth of the tea.
This slow outward radial flow approximately conserves angular momentum, and
by replacing high angular momentum fluid by low angular momentum fluid serves
to spin down the vorticity in the cup far more rapidly than could mere diffusion.

The characteristic time for the secondary circulation to spin down an atmo-
spheric vortex is illustrated most easily in the case of a barotropic atmosphere.
For synoptic-scale motions the barotropic vorticity equation (4.24) can be written
approximately as

Dζg

Dt
= −f

(
∂u

∂x
+ ∂v

∂y

)
= f

∂w

∂z
(5.39)

where we have neglected ζg compared to f in the divergence term and have also
neglected the latitudinal variation of f . Recalling that the geostrophic vorticity is
independent of height in a barotropic atmosphere, (5.39) can be integrated easily
from the top of the Ekman layer (z = De) to the tropopause (z = H ) to give

Dζg

Dt
= +f

[
w(H ) − w(De)

(H − De)

]
(5.40)

Substituting for w(De) from (5.38), assuming that w(H ) = 0 and that H ≫ De,
(5.40) may be written as

Dζg

Dt
= −

∣∣∣∣
f Km

2H 2

∣∣∣∣
1/2

ζg (5.41)

This equation may be integrated in time to give

ζg (t) = ζg (0) exp (−t/τe) (5.42)

where ζg(0) is the value of the geostrophic vorticity at time t = 0, and τe ≡
H |2/(f Km)|1/2 is the time that it takes the vorticity to decrease to e−1 of its
original value.

This e-folding time scale is referred to as the barotropic spin-down time. Taking
typical values of the parameters as follows: H ≡ 10 km, f = 10−4 s−1, and
Km = 10 m2 s−1, we find that τe ≈ 4 days. Thus, for midlatitude synoptic-scale
disturbances in a barotropic atmosphere, the characteristic spin-down time is a
few days. This decay time scale should be compared to the time scale for ordinary
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viscous diffusion. For viscous diffusion the time scale can be estimated from scale
analysis of the diffusion equation

∂u

∂t
= Km

∂2u

∂z2 (5.43)

If τd is the diffusive time scale and H is a characteristic vertical scale for diffusion,
then from the diffusion equation

U
/
τd ∼ KmU

/
H 2

so that τd ∼ H 2/Km. For the above values of H and Km, the diffusion time scale
is thus about 100 days. Hence, in the absence of convective clouds the spin-down
process is a far more effective mechanism for destroying vorticity in a rotating
atmosphere than eddy diffusion. Cumulonimbus convection can produce rapid
turbulent transports of heat and momentum through the entire depth of the tro-
posphere. These must be considered together with boundary layer pumping for
intense systems such as hurricanes.

Physically the spin-down process in the atmospheric case is similar to that
described for the teacup, except that in synoptic-scale systems it is primarily the
Coriolis force that balances the pressure gradient force away from the boundary,
not the centrifugal force. Again the role of the secondary circulation driven by
forces resulting from boundary layer drag is to provide a slow radial flow in the
interior that is superposed on the azimuthal circulation of the vortex above the
boundary layer. This secondary circulation is directed outward in a cyclone so that
the horizontal area enclosed by any chain of fluid particles gradually increases.
Since the circulation is conserved, the azimuthal velocity at any distance from the
vortex center must decrease in time or, from another point of view, the Coriolis
force for the outward-flowing fluid is directed clockwise, and this force thus exerts
a torque opposite to the direction of the circulation of the vortex. Fig. 5.7 shows a
qualitative sketch of the streamlines of this secondary flow.

It should now be obvious exactly what is meant by the term secondary circula-
tion. It is simply a circulation superposed on the primary circulation (in this case
the azimuthal circulation of the vortex) by the physical constraints of the system.
In the case of the boundary layer, viscosity is responsible for the presence of the
secondary circulation. However, other processes, such as temperature advection
and diabatic heating, may also lead to secondary circulations, as shown later.

The above discussion has concerned only the neutrally stratified barotropic
atmosphere. An analysis for the more realistic case of a stably stratified baroclinic
atmosphere is more complicated. However, qualitatively the effects of stratifica-
tion may be easily understood. The buoyancy force (see Section 2.7.3) will act
to suppress vertical motion, as air lifted vertically in a stable environment will be
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Fig. 5.7 Streamlines of the secondary circulation forced by frictional convergence in the planetary
boundary layer for a cyclonic vortex in a barotropic atmosphere. The circulation extends
throughout the full depth of the vortex.

denser than the environmental air.As a result the interior secondary circulation will
decrease with altitude at a rate proportional to the static stability. This vertically
varying secondary flow, shown in Fig. 5.8, will rather quickly spin down the vor-
ticity at the top of the Ekman layer without appreciably affecting the higher levels.
When the geostrophic vorticity at the top of the boundary layer is reduced to zero,

Fig. 5.8 Streamlines of the secondary circulation forced by frictional convergence in the planetary
boundary layer for a cyclonic vortex in a stably stratified baroclinic atmosphere. The circu-
lation decays with height in the interior.
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the pumping action of the Ekman layer is eliminated. The result is a baroclinic vor-
tex with a vertical shear of the azimuthal velocity that is just strong enough to bring
ζg to zero at the top of the boundary layer. This vertical shear of the geostrophic
wind requires a radial temperature gradient that is in fact produced during the
spin-down phase by adiabatic cooling of the air forced out of the Ekman layer.
Thus, the secondary circulation in the baroclinic atmosphere serves two purposes:
(1) it changes the azimuthal velocity field of the vortex through the action of the
Coriolis force and (2) it changes the temperature distribution so that a thermal wind
balance is always maintained between the vertical shear of the azimuthal velocity
and the radial temperature gradient.

PROBLEMS

5.1. Verify by direct substitution that the Ekman spiral expression (5.31) is indeed
a solution of the boundary layer equations (5.26) and (5.27) for the case
vg = 0.

5.2. Derive the Ekman spiral solution for the more general case where the
geostrophic wind has both x and y components (ug and vg , respectively),
which are independent of height.

5.3. Letting the Coriolis parameter and density be constants, show that (5.38) is
correct for the more general Ekman spiral solution obtained in Problem 5.2.

5.4. For laminar flow in a rotating cylindrical vessel filled with water (molecular
kinematic viscosity ν = 0.01 cm2 s−1), compute the depth of the Ekman
layer and the spin-down time if the depth of the fluid is 30 cm and the rotation
rate of the tank is 10 revolutions per minute. How small would the radius of
the tank have to be in order that the time scale for viscous diffusion from
the side walls be comparable to the spin-down time?

5.5. Suppose that at 43˚ N the geostrophic wind is westerly at 15 m s−1. Compute
the net cross isobaric transport in the planetary boundary layer using both the
mixed layer solution (5.22) and the Ekman layer solution (5.31).You may let
|V| = ug in (5.22), h = De = 1 km, κs = 0.05 m−1s, and ρ = 1 kg m−3.

5.6. Derive an expression for the wind-driven surface Ekman layer in the ocean.
Assume that the wind stress τw is constant and directed along the x axis.
The continuity of turbulent momentum flux at the air–sea interface (z = 0)

requires that the wind stress divided by air density must equal the oceanic
turbulent momentum flux at z = 0. Thus, if the flux–gradient theory is used,
the boundary condition at the surface becomes

ρ0K
∂u

∂z
= τw, ρ0K

∂v

∂z
= 0, at z = 0


