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2.1.6 Trapped lee waves

One of the most prominent features of mountain waves is the long train of wave clouds over the lee of
mountain ridges in the lower atmosphere. This type of wave differs from the dispersive tails shown earlier
for the l ≈ k case in that it is located in the lower atmosphere and there is no vertical phase tilt.

This type of trapped lee waves occur when the Scorer parameter decreases rapidly with height (Scorer 1949).

Figure 1: Satellite imagery for lee wave clouds observed at 1431 UTC, 22 October 2003, over western
Virginia. Clouds originate at the Appalachian Mountains. (Courtesy of NASA).
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In considering flows forced by two-dimensional sinusoidal mountains and two-dimensional isolated moun-
tains, we made the following assumptions and approximations when constructing the equations of motion:

• steady-state (∂/∂t = 0)
• non-rotating (f = 0)
• adiabatic q̇ = 0

• Boussinesq (incompressible,∇~u = 0; ρ = ρ, except with g)
• inviscid (Frx and Frz = 0)
• two-dimensional (v = 0, ∂/∂y = 0)
• u(z) = constant
• N(z) = constant

Here, we modify these assumptions to allow for vertical variation in either the zonal wind or static stability
(i.e., u(z) or N(z) 6= constant). Here, the governing equation is

∇2w
′
+ l2(z)w

′
= 0 , (1)

where the Scorer parameter takes its full form

l2(z) =
N2(z)

u2(z)
− 1

u(z)

∂2u(z)

∂z2
. (2)

The condition for vertical propagation becomes ks < l, where ks is the s-th Fourier component of the
topography. If the mean cross mountain wind speed increases strongly with height, or there is a low-level
stable layer so that N decreases strongly with height, there may two layers of fluid with different Scorer
parameter values lU and lL for the upper and lower layers, respectively. Assuming lU < lL, waves whose
wavenumbers fall between the two Scorer parameter values will propagate vertically in the lower layer but
decay with height in the upper layer. When the zonal wind or static stability are approximately constant within
each layer, waves can experience refraction and/or reflection at the adjoining interface. This is physically
similar to optical rays passing through fluids of varying density.

For reflection, each upward-propagating wave has an associated downward-propagating wave. The interac-
tion of these waves is constructive (destructive) when the amplitude increases (decreases). For constructive
interference, lee wave energy becomes trapped in the lower layer, which is then called a wave duct. The
trapped wave is capable of transporting energy over long distances with little attenuation.

Linear theory is expected to reproduce accurate results when the non-dimensional mountain heightNhm/u�
1. Even when this value is not necessarily small, in the cases with constant u and N , the difference between
linear predictions and the full non-linear solutions remains small so long that waves do not break. However,
these differences become dramatic when u and N vary in a way that produces trapped lee waves. Numer-
ical simulations have shown that linear theory only reliably predicts wave amplitude when the ratio of lee
wavelength to mountain width is greater than unity.
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Figure 2: Streamlines in air flow over a mountain for (a) steady flow subject to the linear approximation and
(b) the fully nonlinear and unsteady solution. [From Markowski and Richardson]

Lee waves and rotors

• Due to the co-existence of the upward propagating waves and downward propagating waves, there
exists no phase tilt in the lee waves.

• Once lee waves form, regions of reversed cross-mountain winds near the surface beneath the crests of
the lee waves may develop due to the presence of a reversed pressure gradient force.

• In the presence of surface friction, a sheet of vorticity parallel to the mountain range forms along the
lee slopes, which originates in the region of high shear within the boundary layer.

• The vortex sheet separates from the surface, ascends into the crest of the first lee wave, and remains
aloft as it is advected downstream by the undulating flow in the lee waves (Doyle and Durran 2004).

• The vortex with recirculated air is known as rotor and the process that forms it is known as boundary
layer separation.

• These rotors are often observed to the lee of steep mountain ranges such as over the Owens Valley,
California, on the eastern slope of Sierra Nevada (e.g., Grubis̆ić and Lewis 2004).

• Occasionally, a turbulent, altocumulus cloud forms with the rotor and is referred to as rotor cloud.
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2.1.7 Nonlinear flows over two-dimensional mountains

• The linear dynamics of mountain waves over 2D ridges are fundamentally understood.

• Linear theory, however, begins to break down when the perturbation velocity (u′) becomes large com-
pared with the basic flow (u) in some regions, so that the flow becomes stagnant.

• This happens when the mountain becomes very high, the basic flow becomes very slow, or the strati-
fication becomes very strong.

• In other words, flow becomes more nonlinear when the Froude number, u/Nhm , becomes small.

• For simplicity, the mountain height is denoted by hm. Thus, in order to fully understand the dynamics
of nonlinear phenomena, such as upstream blocking, wave breaking, severe downslope winds and lee
vortices, we need to take a nonlinear approach.

• Nonlinear response of a continuously stratified flow over a mountain is very complicated since the non-
linearity may come from the basic flow characteristics, the mountain height, or the transient behavior
of the internal flow, such as wave steepening.

Another way to understand why linear theory fails in these cases is by considering that in linear theory, the
forcing at a particular wavelength is obtained by the Fourier transform of the mountain. As a result, little
forcing is produced at the resonant wavelength if the mountain is much wider than that wavelength. The
nonlinear wave amplitude when resonant wavelengths are short compared to the mountain width is due to
enhancement of shorter wavelengths through nonlinear wave interactions rather than through direct terrain
forcing. These interactions are not accounted for in linear theory.

Long (1953) derived the governing equation for the finite-amplitude, steady state, two-dimensional, inviscid,
continuously and stably stratified flow and obtained an equation for vertical displacement of a streamline
from its far upstream δ. It looks essentially the same as the equation for w′ that we derived earlier for linear
waves:

∇2δ + l2δ = 0 , (3)

where l = N/u is the Scorer parameter of the basic flow far upstream.

The main difference from the linear problem is that nonlinear lower boundary condition has to be used to
represent the finite-amplitude mountain:

δ(x, z) = h(x) at z = h(x) . (4)

The nonlinear lower boundary condition is applied on the mountain surface, instead of approximately applied
at z = 0 as in the linear lower boundary condition. The general solution to Eq. (3) is actually similar to the
linear solutions we obtained earlier.
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In Fig. 6 streamlines of analytical solutions are shown for flow over a semi-circle obstacle for the non-
dimensional mountain heights = 0.5, 1.0, 1.27, and 1.5. The non-dimensional mountain height (the reciprocal
of the Froude number) which is a measure of the non-linearity of the continuously stratified flow.

Figure 3: Streamlines of Long’s model solutions for uniform flow over a semi-circle obstacle with Nh/U =
(a) 0.5, (b) 1.0, (c) 1.27, and (d) 1.5. Note that the streamlines become vertical in (c) and overturn in (d).
(Adapted after Miles 1968)

When Nhm/u is small (e.g., 0.5) the flow is more linear. As Nhm/u increases to 1.27, the flow becomes
more non-linear and its streamlines become vertical at the first level of wave steepening. For flow with
Nhm/u > 1.27, the flow becomes statically and dynamically (shear) unstable.
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2.1.8 Generation of severe downslope winds

Severe downslope winds over the lee of a mountain ridge have been observed in various places around the
world, such as the chinook over the Rocky Mountains, foehn over the Alps. One well-known event is the 11
January 1972 windstorm that occurred in Boulder, Colorado. With this event, the peak wind gust reached as
high as 60 ms−1 and produced severe damage in the Boulder, Colorado area.

Figure 4: Analysis of potential temperatures (blue contours; K) from aircraft flight data and rawinsondes on
11 January 1972 during a downslope windstorm near Boulder, CO. [From Markowski and Richardson]

Figure 5: Analysis of the westerly wind component (blue contours; m/s) on 11 January 1972 during the
downslope windstorm near Boulder, CO. [From Markowski and Richardson]
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The basic dynamics of the severe downslope wind can be understood from the following two major theories:
(a) resonant amplification theory (Clark and Peltier 1984), and (b) hydraulic jump theory (Smith 1985), along
with later studies on the effects of instabilities, wave ducting, nonlinearity, and upstream flow blocking.

Resonant Amplification Theory
Idealized nonlinear numerical experiments indicate that a high-drag (severe-wind) state occurs after an up-
ward propagating mountain wave breaks above a mountain.

The wave-breaking region is characterized by strong turbulent mixing, with a local wind reversal on top of
it. The wind reversal level coincides with the critical level for a stationary mountain wave and, thus, is also
referred to as the wave-induced critical level. Waves can not propagate through the critical level and are
reflected downwards. The wave breaking region aloft acts as an internal boundary which reflects the upward
propagating waves back to the ground and produces a high-drag state through partial resonance with the
upward propagating mountain waves.

Figure 6: Illustration of wave reflection and transmission between the ground surface and some upper level.
[From Nappo, 2002]

When the basic-flow critical level is located at a non-dimensional height of zi/λz = 3/4+n (n is an integer,
zi is a prescribed critical level height, λz = 2πu/N is the vertical hydrostatic length scale) above the surface,
non-linear resonant amplification occurs between the upward propagating waves generated by the mountain
and the downward propagating waves reflected from the critical level. On the other hand, if the basic-flow
critical level is located at a non-dimensional height zi/λz 6= 3/4+n (e.g., 1.15), there is no wave resonance
and no severe downslope winds are generated.

Because the severe downslope winds are developed by resonance between upward and downward waves, this
mechanism is referred to as the resonant amplification mechanism.

For the above reasons, the vertical structure of the atmosphere, particularly in terms of the Scorer param-
eter (as it determines the vertical wavelength), is most important for the onset of resonant response, given
sufficiently strong orographic forcing to cause wave breaking. Wave breaking occurs when waves reach
large enough amplitudes. When wave breaking occurs, it induces a critical level in the shear layer with
low Richardson number and, thus, establishes a flow configuration favorable for wave ducting and resonant
amplification in the lower uniform flow layer.
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Figure 7: Wave ducting as revealed by the time evolution of horizontal wind speeds and regions of local
(shaded) for a flow with uniform wind and constant static stability over a mountain ridge at (a) 12.6, and (d)
50.4. The Froude number of the uniform basic wind is 1.0. (Adapted after Wang and Lin 1999)

Figure 8: Effects of nonlinearity on the development of severe downslope winds: (a) Potential temperature
field from nonlinear numerical simulations for a basic flow with and ; (b) Same as (a) except from linear
numerical simulations. The contour interval is 1 K in both (a) and (b). (Adapted after Wang and Lin 1999)

Effects of the wave ducting on the development of high-drag states for a flow with uniform wind and constant
static stability are illustrated in Fig. 7. Shortly after the occurrence of wave breaking, regions with localRi <
0.25 form (Fig. 7a). This turbulent mixing region expands downward and downstream due to strong non-
linear effects on the flow near the critical level (Fig. 8a). This region expands downward by wave reflection
and ducting from the wave-induced critical level and accelerates downstream by the non-linear advection
(Fig. 7b).

Effects of wave reflection are evidenced by the fact that the wave duct with severe downslope wind is located
below the region of the turbulent mixing. In the absence of non-linearity (Fig. 8b), the wave-breaking region
does not expand downward to reduce the depth of the lower uniform wind layer. This, in turn, prohibits the
formation of the severe downslope wind and internal hydraulic jump.
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Hydraulic Jump Theory

The above image depicts a hydraulic jump in a kitchen sink, which shows a very rapid change in the flow
depth across the jump. Around the place where the tap water hits the sink, you will see a smooth looking
flow pattern. A little further away, you will see a sudden ‘jump’ in the water level. This is a hydraulic jump.

A hydraulic theory was proposed to explain the development of severe downslope winds based on the sim-
ilarity of flow configurations of severe downslope windstorms and finite-depth, homogeneous flow over a
mountain ridge (Smith 1985).

The hydraulic theory attributes the high-drag (severe-wind) state to the interaction between a smoothly strat-
ified flow and the deep, well-mixed, turbulent “dead” region above the lee slope in the middle troposphere.

Though not directly applicable to stratified atmosphere associated with downslope wind storms, using shal-
low water theory will offer some intuition about flow traversing a barrier.
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Assume there is a layer of fluid with density ρ, where the top of the layer is a free surface. The terrain height
is ht and the perturbation fluid depth is D, such that the height of the free surface is D + ht (Fig. 9).

Figure 9: Relationship between free surface height, depth (D), and terrain height (ht).

The boundary conditions are given by

w(x, ht) = u
∂ht
∂x

(5)

w(x,D + ht) ≈ u
∂(D + ht)

∂x
. (6)

Now, we consider the equations of motion for non-linear, steady-state, inviscid, hydrostatic fluid in a non-
rotating reference frame

u
∂u

∂x
+

1

ρ

∂p

∂x
= 0 (7)

∂u

∂x
+
∂w

∂z
= 0 (8)

To make things more convenient, we want to eliminate p and w in favor of D and ht so that the flow accel-
erations following a parcel can be related to changes in the depth of the fluid and to the slope of the terrain.
Assuming hydrostatic balance, ∂p = −ρg∂z, which leads to

1

ρ

∂p

∂z
= −g∂(D + ht)

∂x
.

The continuity equation can be integrated with respect to z over the fluid depth to obtain

∫ D+ht

ht

∂u

∂x
dz +

∫ D+ht

ht

∂w

∂z
dz = 0

∂u

∂x
(D + ht − ht) + w(D + ht)− w(ht) = 0

∂u

∂x
D + u

∂(D + ht)

∂x
− u∂ht

∂x
= 0 .
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Note that ∂u/∂x was pulled outside of the integral because u is independent of z for all times if it is initially.
Eq. (7) suggests that u depends on the horizontal pressure gradient force, which itself only depends on the
fluid depth (independent of z). Thus, the equations of motion can be rewritten as

u
∂u

∂x
+ g

∂D

∂x
= −g∂ht

∂x
(9)

∂(uD)

∂x
= 0 . (10)

Equation (9) states that a steady-state is achieved through a balance between horizontal advection and hor-
izontal pressure gradient force. Equation (10) states that mass is conserved by requiring a constant mass
flux in the x-direction. Constant mass flux means that a thickening (thinning) of the fluid is associated with
deceleration (acceleration) following the particle.

We now seek to combine Eqs. (9) and ( 10) into a single equation. To do this, we solve for ∂u/∂x in Eq. (10)
and substitute the result into Eq.( 9). This yields

−u
2

D

∂D

∂x
+ g

∂D

∂x
= −g∂ht

∂x
. (11)

Divide by g to obtain (
1− u2

gD

)
∂D

∂x
= −∂ht

∂x
. (12)

The intrinsic shallow-water gravity wave speed is defined as c2 ≡ gD. Substitution into Eq. (12) yields

(
1− u2

c2

)
∂D

∂x
= −∂ht

∂x
, (13)

which is equivalent to

(
1− Fr2

) ∂D
∂x

= −∂ht
∂x

, (14)

where Fr = u2/c2 is the Froude number for shallow-water theory. Here, the Froude number is the ratio of
the mean flow to the gravity wave phase speed.

When Fr > 1, gravity waves are unable to propagate upstream relative to the mean flow, and the fluid is
unable to produce perturbation pressure gradients of sufficient magnitude to balance nonlinear advection.

We will now use this Froude number to identify three distinct flow regimes.
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Fr > 1

Based on Eq. (14), if Fr > 1 and ∂ht/∂x > 0, then ∂D/∂x > 0. This means that fluid traveling uphill
will thicken, reaching its maximum thickness at the peak of the mountain (Fig. 10a). Conversely, on the lee
side, ∂ht/∂x < 0 and ∂D/∂x < 0, meaning that the fluid thins. As the thickness of the fluid changes,
the zonal velocity also changes in accordance with the constant zonal mass flux prescribed by the continuity
equation. Thus, when Fr > 1, there is a minimum in zonal velocity at the top of the mountain where the
fluid is thickest.

If we consider a parcel embedded in a westerly wind, the parcel will decelerate as it passes over the mountain
and then return to its original wind speed at the leeward base of the mountain (assuming we neglect friction).
This regime represents a transfer of energy from kinetic to potential and back to kinetic. We find such
behavior to be quite intuitive. Consider, for example, a ball rolling up a hill then descending once it crests
the peak. Flow where Fr > 1 is called supercritical flow.

Fr < 1

Based on Eq. (14), if Fr < 1 and ∂ht/∂x > 0, then ∂D/∂x < 0. This means that fluid traveling uphill
will thin, reaching its maximum thinness at the peak of the mountain (Fig. 10b). Conversely, on the lee side,
∂ht/∂x < 0 and ∂D/∂x > 0, meaning that the fluid thickens. The behavior associated with subcritical
flow as a parcel traverses a mountain is not in line with our usual arguments regarding the simple transfer of
energy from kinetic to potential, and we must break with our conceptual model of an isolated ball rolling up
a hill.

An air parcel feel the presence of surrounding air parcels through the pressure gradient force. Thus, the
acceleration obtained by an isolated air parcel depends on the difference between the pressure gradient force
arising from changes in the fluid depth (the second term in Eq. 9) versus the amount of work (i.e., conversion
of kinetic energy to potential energy) associated with ascending the terrain. Here, the pressure gradient force
dominates and leads to a net positive acceleration following the parcel as it ascends. On the lee side, the fluid
thickens and returns to its original depth as the parcel decelerates to its original speed. Flow where Fr < 1

is called subcritical flow.

Fr ≈ 1 (initially)
Both of the previously considered cases both return the parcel to its original wind speed when it reaches the
lee side. How do we get winds that accelerate along the entire path from the windward to the leeward side?
For the windward side, this acceleration requires subcritical flow, while on the leeward side the acceleration
requires supercritical flow. In other words, the acceleration on the windward side must cause u to cross the
threshold from subcritical to supercritical flow, which is likely to happen only if the flow has a Fr close to
unity at the start.

The transition from subcritical to supercritical results in leeward wind speeds that exceed their original value
on the windward side. In accordance with the increasing speeds, the fluid thickness decreases over the
entire path. This causes the free surface to drop sharply on the leeward side (analogous to the descending
isentropes during downslope wind events) and results in what is called a hydraulic jump. Hydraulic jumps
are very turbulent, and large amounts of energy are dissipated within them.
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Figure 10: Flow over an obstacle for the simple case of a single layer of fluid having a free surface. (a)
Supercritical flow (Fr > 1) everywhere, (b) Subcritical flow (Fr < 1) everywhere, (c) Supercritical flow on
the lee slope with adjustment to subcritical flow at a hydraulic jump near the base of the obstacle. [From
Markowski and Richardson])

Predicting downslope wind storms
Putting all of this together, here are some of the conditions that forecasters look for when predicting downs-
lope windstorms:

• an asymmetric mountain with a gentle windward slope and a steep lee slope
• strong cross-mountain geostrophic winds (> 15 ms−1) at and just above mountain-top level associated
with surface high pressure upstream and surface low pressure downstream

• an angle between the cross-mountain flow and the ridge that is greater than ∼ 60 deg

• a stable layer near or just above the mountain top, and a layer of lesser stability above
• a level that exhibits a wind direction reversal or where the cross-barrier flow simply goes to zero (the
mean state critical level); the existence of weak, vertical wind shear or reverse shear is more favorable
than forward shear

• situations of cold advection and anticyclonic vorticity advection, which promote downward synoptic
motion to generate and reinforce the vertical stability structure

• absence of a deep, cold, stable layer in the lee of mountains, which may keep the downslope flow from
penetrating to the surface.
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2.1.9 Trapped Lee Waves Behind a 3D Mountain

Although the two-dimensional mountain wave theories helped explain some important flow phenomena gen-
erated by infinitely long ridges, such as upward propagating mountains waves, lee waves, wave overturning
and breaking, and severe downslope winds, in reality most of the mountains are of three-dimensional, com-
plex form.

As in the two-dimensional mountain wave problem, a rapid decrease of the Scorer parameter with height
leads to the formation of trapped lee waves. The formation of three-dimensional trapped lee waves is similar
to that of Kelvin ship waves over the water surface.

Figure 11 is an example of the cloud streets associated with three-dimensional trapped lee waves produced
by flow past a mountainous island. The wave pattern is generally contained within a wedge with the apex at
the mountain.

Figure 11: Satellite imagery showing three-dimensional trapped lee waves induced by the Sandwich Islands
in southern Atlantic Ocean on November 23, 2009. The wave pattern is similar to that of the ship waves.
(credit: NASA)

The three-dimensional trapped lee waves are composed by transverse waves and diverging waves. The trans-
verse waves lie approximately perpendicular to the flow direction, and are formed by waves attempting to
propagate against the basic flow but that have been advected to the lee.
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The formation mechanism of transverse waves is the same as that of the two-dimensional trapped lee waves.
Unlike the transverse waves, the diverging waves attempt to propagate laterally away from the mountain and
have been advected to the lee.

Also, the diverging waves have crests that meet the incoming flow at a rather shallow angle. Both of the trans-
verse and diverging waves are mathematically associated with a stationary phase point, and the significant
disturbance is confined within a wedge angle of about 19◦28′ with the x-axis.

Figure 12: Schematic of transverse (bold-dashed) and diverging (solid) phase lines for a classical deep water
ship wave. (Adapted after Sharman and Wurtele 1983)
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