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Orographically forced flows

Many well-known weather phenomena are directly related to flow over orography,
such as mountain waves, lee waves and clouds, rotors and rotor clouds, severe down-

slope windstorms, lee vortices, lee cyclogenesis, frontal distortion across mountains,
cold-air damming, track deflection of midlatitude and tropical cyclones, coastally

trapped disturbances, orographically induced rain and flash flooding, and orographic-
ally influenced storm tracks. A majority of these phenomena are mesocale and are

induced by stably stratified flow over orography. Thus, understanding the dynamics
associated with stably stratified flow over a mesoscale mountain is essential in imp-
roving the prediction of the above mentioned phenomena. In addition, understanding

the dynamics of orographically forced flow will also help on different aspects of
meteorology, such as turbulence which affects aviation safety, wind-damage risk

assessment, pollution dispersion in complex terrain, and subgrid-scale parameteriza-
tion of mountain wave drag in general circulation models.

5.1 Flows over two-dimensional sinusoidal mountains

Some fundamental properties of flow responses to orographic forcing can be under-

stood by considering a two-dimensional, steady-state, adiabatic, inviscid, nonrotat-
ing, Boussinesq fluid flow over a small-amplitude mountain. The governing linear
equations can be simplified from (2.2.14)–(2.2.18) to be

U
@u0

@x
þUzw

0 þ 1

!o

@p0

@x
¼ 0; (5:1:1)

U
@w0

@x
# g

"0

"o
þ 1

!o

@p0

@z
¼ 0; (5:1:2)

@u0

@x
þ @w

0

@z
¼ 0; (5:1:3)
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U
@!0

@x
þN2!o

g
w0 ¼ 0: (5:1:4)

The above set of equations can be further reduced to Scorer’s equation (1954),

r2w0 þ l2ðzÞw0 ¼ 0; (5:1:5)

where r2¼ @2/@x2þ @2/@z2 is the two-dimensional Laplacian operator, and l is the
Boussinesq form of the Scorer parameter (Scorer 1949), which is defined as:

l 2ðzÞ ¼ N2

U2
%Uzz

U
: (5:1:6)

Equation (5.1.5) serves as a central tool for numerous theoretical studies of small-
amplitude, two-dimensional mountain waves, which may also be interpreted as a vorti-

city equation upon being multiplied by U (Smith 1979). The first term, Uðw0xx þ w0zzÞ,
is the rate of change of vorticity following a fluid particle. The second term, N2w0/U,

is the rate of vorticity production by buoyancy forces. The last term,%Uzzw
0, represents

the rate of vorticity production by the redistribution of the background vorticity (Uz).

In the extreme case of very small Scorer parameter, (5.1.5) reduces to irrotational or
potential flow,

r2w0 ¼ 0: (5:1:7)

As discussed in Chapter 3 [(3.5.22)], the buoyancy force is negligible in this extreme
case. If the forcing is symmetric in the basic flow direction, such as a cylinder in an
unbounded fluid or a bell-shapedmountain in a half-plane, then the flow is symmetric.

For this particular case, there is no drag produced on the mountain since the fluid is
inviscid.

In order to simplify the mathematics of the steady-state mountain wave problem,
one may assume thatU(z) andN(z) are independent of height, and a sinusoidal terrain

hðxÞ ¼ hm sin kx; (5:1:8)

where hm is the mountain height and k is the wave number of the terrain. For an

inviscid fluid flow, the lower boundary condition requires the fluid particles to follow
the terrain, so that the streamline slope equals the terrain slope locally,

w

u
¼ w0

Uþ u0
¼ dh

dx
at z ¼ hðxÞ: (5:1:9)

For a small-amplitude mountain, this leads to the linear lower boundary condition

w0 ¼ U
dh

dx
at z ¼ 0; (5:1:10)
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or

w0ðx; 0Þ ¼ Uhmk cos kx at z ¼ 0; (5:1:11)

for flow over a sinusoidal mountain as described by (5.1.8). Due to the sinusoidal
nature of the forcing, it is natural to look for solutions in terms of sinusoidal

functions,

w0ðx; zÞ ¼ w1ðzÞ cos kxþ w2ðzÞ sin kx: (5:1:12)

Substituting the above solution into (5.1.5) with a constant Scorer parameter leads to

wizz þ ðl2 % k2Þwi ¼ 0; i ¼ 1; 2: (5:1:13)

As discussed in Chapter 3 [(3.5.7)], two cases are possible: (a) l2< k2 and (b) l2> k2.

The first case requires N/U< k or Na/U< 2p, where a is the terrain wavelength.
Physically, this means that the basic flow has relatively weaker stability and stronger

wind, or that the mountain is narrower than a certain threshold. For example, to
satisfy the criterion for a flow with U¼ 10m s%1 and N¼ 0.01 s%1, the wavelength of
the mountain should be smaller than 6.3 km. In fact, this criterion can be rewritten as

(a/U)/(2p/N)< 1. The numerator, a/U, represents the advection time of an air parcel
passing over one wavelength of the terrain, while the denominator, 2p/N, represents

the period of buoyancy oscillation due to stratification. This means that the time an
air parcel takes to pass over the terrain is less than it takes for vertical oscillation due

to buoyancy force. In other words, buoyancy force plays a smaller role than the
horizontal advection. In this situation, (5.1.13) can be rewritten as

wizz % ðk2 % l2Þwi ¼ 0; i ¼ 1; 2: (5:1:14)

The solutions of the above second-order differential equation with constant coeffi-

cient may be obtained

wi ¼ Aie
lz þ Bie

%lz; i ¼ 1; 2; (5:1:15)

where

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 % l2
p

: (5:1:16)

Similar to that described in Section 3.4, the upper boundedness condition requires
Ai¼ 0 because the energy source is located at z¼ 0. Applying the lower boundary

condition, (5.1.11), and the upper boundary condition (Ai¼ 0) to (5.1.15) yields

B1 ¼ Uhmk; B2 ¼ 0: (5:1:17)

This gives the solution,

w0ðx; zÞ ¼ w1ðzÞ cos kx ¼ Uhmke
%
ffiffiffiffiffiffiffiffiffi
k2%l 2
p

z cos kx; (5:1:18)
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The vertical displacement (!) is defined as w0¼D!/Dt which reduces to

w0 ¼ D!

Dt
¼ U

@!

@x
(5:1:19)

for a steady-state flow.
Equation (5.1.18) can then be expressed in terms of !,

! ¼ 1

U

Z x

0
w0dx ¼ hm sin kx e"

ffiffiffiffiffiffiffiffiffi
k2"l 2
p

z : (5:1:20)

The above solution is sketched in Fig. 5.1a. The disturbance is symmetric with

respect to the vertical axis and decays exponentially with height. Thus, the flow
belongs to the evanescent flow regime as discussed in Section 3.5. The buoyancy
force plays a minor role compared to that of the advection effect. The other variables

can also be obtained by using the governing equations and (5.1.18),

u0 ¼ U hm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 " l2
p

sin kx e"
ffiffiffiffiffiffiffiffiffi
k2"l2
p

z ; (5:1:21)

p0 ¼ ""oU2 hm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 " l2
p

sin kx e"
ffiffiffiffiffiffiffiffiffi
k2"l2
p

z; (5:1:22)

#0 ¼ "ð#oN2=gÞhm sin kx e"
ffiffiffiffiffiffiffiffiffi
k2"l2
p

z : (5:1:23)

The maxima and minima of u0, p0, and #0 are also denoted in Fig. 5.1a. The coldest
(warmest) air is produced at the mountain peak (valley) due to adiabatic cooling
(warming). The flow accelerates over the mountain peaks and decelerates over the

(a)

(b)

C L
u' > 0

u' > 0
u' > 0

u' > 0

u' < 0

u' = 0

u' = 0

u' = 0

u' < 0
u' < 0

W H

C L

W
H

C C
LL H

Fig. 5.1 The steady-state, inviscid flow over a two-dimensional sinusoidal mountain when
(a) l2< k2 (or N< kU), where k is the terrain wavenumber (¼ 2p/a, where a is the terrain wave
length), or (b) l2> k2 (orN> kU). The dashed line in (b) denotes the upstream tilt of the constant
phase line. The maxima and minima of u0, p0 (H and L), and #0 (W and C) are denoted in the
figures.

112 Orographically forced flows

Cambridge Books Online © Cambridge University Press, 2010Downloaded from Cambridge Books Online by IP 129.15.109.254 on Mon Jan 19 18:15:57 GMT 2015.
http://dx.doi.org/10.1017/CBO9780511619649.006

Cambridge Books Online © Cambridge University Press, 2015



valleys. From the horizontal momentum equation, (5.1.1) with Uz¼ 0, or (5.1.22), a

low (high) pressure is produced over the mountain peak (valley) where maximum
(minimum) wind is produced. Note that (5.1.1) is also equivalent to the Bernoulli

equation, which states that the pressure perturbation is out of phase with the horizon-
tal velocity perturbation. Since no pressure difference exists between the upslope and
downslope, this flow produces no net wave drag on the mountain (mountain drag).

The mountain drag can be computed either from the horizontal pressure force on the
mountain over a wavelength,

D ¼ k

2p

Z p=k

"p=k
p0ðx; z ¼ 0Þ dh

dx

! "
dx; (5:1:24)

or equivalently, as the negative of the vertical flux of horizontal momentum (mom-
entum flux) in the wave motion,

D ¼ " !ok
2p

Z p=k

"p=k
u0w0dx: (5:1:25)

Note that Eliassen and Palm’s theorem, (4.4.10), indicates that the vertical flux of

horizontal momentum in a steady-state flow is negatively proportional to the vertical
energy flux, p0w0 (where the overbar denotes the average over a wavelength).

In the second case, l2> k2, the flow response is completely different. This case
requires N/U> k or Na/U> 2p. As discussed in Section 3.5, this means that the

basic flow has relatively stronger stability and weaker wind or that the mountain is
wider. For example, and as mentioned earlier, to satisfy the criterion for a flow with
U¼ 10m s"1and N¼ 0.01 s"1, the terrain wavelength should be larger than 6.3 km.

Since (a/U)/(2p/N)> 1, the advection time is larger than the period of the vertical
oscillation. In other words, buoyancy force plays a more dominant role than the

horizontal advection. In this case, (5.1.13) can be written as

wizz þm2wi ¼ 0; m2 ¼ l2 " k2; i ¼ 1; 2: (5:1:26)

We look for solutions in the form

wiðzÞ ¼ Ai sinmzþ Bi cosmz; i ¼ 1; 2: (5:1:27)

Substituting (5.1.27) into (5.1.12) leads to

w0ðx; zÞ ¼C cosðkxþmzÞ þD sinðkxþmzÞ þ E cosðkx"mzÞ
þF sinðkx"mzÞ:

(5:1:28)

In the above equation, terms of (kxþmz) have an upstream phase tilt with height,
while terms of (kx"mz) have a downstream phase tilt. It can be shown that terms
of (kxþmz) have a positive vertical energy flux and should be retained since the
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energy source in this case is located at the mountain surface. This satisfies the

Sommerfeld radiation boundary condition, as discussed in Section 4.4. Thus, the
solution requires E¼F¼ 0. This flow regime is characterized as the upward propagat-

ing wave regime, as discussed in Chapter 3. As in the first case, the lower boundary
condition requires

C ¼ Uhmk; D ¼ 0: (5:1:29)

This leads to

w0ðx; zÞ ¼ Uhmk cosðkxþmzÞ: (5:1:30)

Other variables can be obtained through definitions or the governing equations,

!ðx; zÞ ¼ hm sinðkxþmzÞ; (5:1:31)

u0ðx; zÞ ¼ %Uhmm cosðkxþmzÞ; (5:1:32)

p0ðx; zÞ ¼ "oU2hmm cosðkxþmzÞ; and (5:1:33)

#0ðx; zÞ ¼ %N2#ohm
g

sinðkxþmzÞ: (5:1:34)

The vertical displacement of the flow, and the maxima and minina of u0, p0, and

#0 are depicted in Fig. 5.1b. Note that the flow pattern is no longer symmetric. The
constant phase lines are tilted upstream (to the left) with height, thus producing a high

pressure on the windward slope and a low pressure on the lee slope. Based on (5.1.32)
or the Bernoulli equation (5.1.1), the flow decelerates over the windward slope and
accelerates over the lee slope. The coldest and warmest spots are still located over

the mountain peaks and valleys, respectively. The mountain drag can be calculated
either from (5.1.24) or (5.1.25) to be

D ¼ 1

2
"oU

2h2mk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 % k2
p

: (5:1:35)

The positive wave drag on the mountain is produced by the high pressure on the

windward slope and the low pressure on the lee slope. This also can be understood
through (5.1.25) and the out-of-phase relationship of u0 and w0 over the windward and

lee slopes, as shown in Fig. 5.1b.
When l2>> k2, the flow approaches a limiting case in which the buoyancy effect

dominates and the advection effect is totally negligible. In other words, the vertical
pressure gradient force and the buoyancy force are roughly in balance and the vertical

acceleration can be ignored. Thus, the mountain waves become hydrostatic. In this
limiting case, the governing equation becomes
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w0zz þ l2w0 ¼ 0: (5:1:36)

The flow pattern repeats itself in the vertical with a wavelength of !z¼ 2p/l¼ 2pU/N,
which is also referred to as the hydrostatic vertical wavelength. The regime boundary

between the regimes of vertically propagating waves and evanescent waves can be
found by letting l¼ k, which leads to a¼ 2pU/N. The relation among the mountain

waves discussed in this subsection is sketched in Fig. 5.2.

5.2 Flows over two-dimensional isolated mountains

5.2.1 Uniform basic flow

The mountain wave problem in Section 5.1 may be extended to be more realistic by

assuming an isolatedmountain. Taking the one-sidedFourier transform (Appendix 5.1)
of (5.1.5) yields

ŵzz þ ðl2 $ k2Þŵ ¼ 0: (5:2:1)

The Fourier transform of the linear lower boundary condition, (5.1.10), is

ŵðk; z ¼ 0Þ ¼ ikU ĥðkÞ: (5:2:2)

For constant Scorer parameter, the solution of (5.2.1) can be written into two parts,

ŵðk; zÞ ¼ ŵðk; 0Þei
ffiffiffiffiffiffiffiffiffi
l2$k2
p

z for l24k2 and (5:2:3a)

ŵðk; zÞ ¼ ŵðk; 0Þe$
ffiffiffiffiffiffiffiffiffi
k2$l2
p

z for l25k2: (5:2:3b)

Taking the inverse one-sided Fourier transform of (5.2.3) yields the solution in the

physical space,

w0ðx; zÞ ¼ 2Re

Z l

0
ikU ĥðkÞei

ffiffiffiffiffiffiffiffiffi
l2$k2
p

zeikxdkþ
Z 1

l
ikU ĥðkÞe$

ffiffiffiffiffiffiffiffiffi
k2$l2
p

zeikxdk

" #
; (5:2:4)

where Re represents the real part. The first integration on the right-hand side of (5.2.4)

represents the upward propagating wave which satisfies the upper radiation boundary

l << k

Irrotational
(Potential)

flow

Evanescent
flow

Vertically
propagating

waves

l < k l > k l >> k

Hydrostatic
waves

~10~0.1 1
l / k

Fig. 5.2 Relations among different mountain wave regimes as determined by l/k, where l is the
Scorer parameter and k is the wave number.
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condition, while the second integration represents the evanescent wave which satisfies

the boundedness upper boundary condition. Note that (5.2.4) is for a continuous
spectrum of Fourier modes, instead of just one single mode as considered in

Section 5.1.
For simplicity, let us consider a bell-shaped mountain or the Witch of Agnesi

mountain profile,

hðxÞ ¼ hma2

x2 þ a2
; (5:2:5)

where hm is the mountain height and a is the half-width where the mountain height is
hm/2. The advantage of using a bell-shaped mountain lies in that its one-sided Fourier

transform (Appendix 5.1) is in a simple form,

ĥðkÞ ¼ hma

2
e%ka; for k40: (5:2:6)

The Fourier transform for any k is (hma/2) exp(%|k|a). First, we will center our

discussion on the extreme case with l2<< k2 (i.e., al<< 1 or Na<<U). Note that for
bell-shaped mountains, we assume k& 1/a, instead of k¼ 2p/a for sinusoidal moun-

tains. As discussed earlier, the flow becomes a potential flow in which the buoyancy
plays a negligible role. In this case, (5.2.4) can be approximated by

w0ðx; zÞ & 2Re U

Z 1

0
ik ĥðkÞe%kzeikxdk

! "

¼ 2Re U

Z 1

0
ik

hma

2

# $
e%kae%kzeikxdk

! "
:

(5:2:7)

Since w¼U@!/@x, the Fourier transform of ! can be obtained from that of ŵ,

!̂ðk; zÞ ¼ ŵðk; zÞ
ikU

: (5:2:8)

Substituting (5.2.7) into (5.2.8) leads to

!ðx; zÞ ¼ hmaRe

Z 1

0
e%kðzþa%ixÞdx ¼ hmaðzþ aÞ

x2 þ ðzþ aÞ2
: (5:2:9)

Therefore, similar to the sinusoidal mountain case, the flow pattern is symmetric with
respect to the center of the mountain ridge (x¼ 0). However, the amplitude decreases

with height linearly, instead of exponentially. The flow pattern is depicted in
Fig. 5.3a.

Second, let us consider another extreme case: l2>> k2 (i.e., al>> 1 or Na>>U). As
discussed in Section 5.1, the vertical acceleration due to the buoyancy force plays a
dominant role. In this case, the solution (5.2.4) can be approximated by
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w0ðx; zÞ # 2Re U

Z 1

0
ikĥðkÞeilzeikxdk

! "
¼ 2Re U

Z 1

0
ik

hma

2

# $
e%kaeilzeikxdk

! "
:

(5:2:10)

Similarly, the vertical displacement can be obtained,

!ðx; zÞ ¼ 2Re

Z 1

0

hma

2
e%kaeiðkxþlzÞdk ¼ hmaða cos lz% x sin lzÞ

x2 þ a2
: (5:2:11)

This type of flow is characterized as a hydrostaticmountainwave. The disturbance confines
itself over the mountain in horizontal, but repeats itself in vertical with a wavelength of

2pU/N. Without the Boussinesq approximation, the above solution becomes

!ðx; zÞ ¼ "s
"ðzÞ

# $1=2 hmaða cos lz% x sin lzÞ
x2 þ a2

! "
; (5:2:12)

where "s is the air density near surface. Equation (5.2.12) indicates that the wave
amplitude will increase with a decreased air density of the basic flow. That is, the wave

amplitude will increase at higher altitudes since air density decreases with height in a
stably stratified flow. This helps explain the wave amplification in the higher atmo-

sphere, such as large-amplitude gravity waves in the stratosphere. As described in
Section 5.1, other fields can be obtained by the governing equations, (5.1.1)–(5.1.4)
with Uz¼ 0. The wave drag on the mountain surface in this hydrostatic limit can be

obtained by applying the Parseval theorem (Appendix 5.1),

D ¼
Z 1

%1
p0ðx; z ¼ 0Þ dh

dx
dx ¼

Z 1

%1
p0ðx; 0Þ dh

'

dx
dx ¼ p

4
"oUNh2m (5:2:13)

where h* is the complex conjugate of h. The momentum is transferred to a level where

the wave breaks down, which is not included in the linear theory.

(a) (b)

x (km)x (km)

z 
(k

m
)

0

3

6

9 18

12

6

0
–1.5 0 1.5 –150 0 150

Fig. 5.3 Streamlines of steady-state flow over an isolated, bell-shaped mountain when (a) l2( k2

(or Na<<U), where a is the half-width of the mountain, or (b) l2>> k2 (or Na>>U). (Adapted
after Durran 1990.)
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Third, an asymptotic solution can be obtained for the case with l2! k2 (i.e., al! 1 or

Na!U). In this case, all terms of the vertical momentum equation, (5.1.2) are equally
important. Both asymptoticmethods and numerical methods have been applied to solve

the problem. In the following, we apply the stationary phase method to this particular
problem. We look for solutions far downstream, x!1 in (5.2.4). In this limit, the
second term on the right side of (5.2.4) approaches 0 due to fast oscillation of exp(ikx),

according to the Riemann–Lebesgue Lemma (Appendix 5.1). For large x, we have

!ðx; zÞ ! 2Re

Z l

0
ĥðkÞei"ðkÞdk; (5:2:14)

where

"ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 % k2
p

zþ kx (5:2:15)

is a phase function. Based on the stationary phase method, we will look for a
particular k* such that

d"

dk
¼ 0 at k ¼ k'; (5:2:16)

where k* is called the point of stationary phase. With large x or z, exp(i") will oscillate
rapidly and, therefore, ! will approach 0, according to the Riemann-Lebesgue
Lemma. However, near k*, the contribution to the integration by exp(i") still remains

because " is approximately constant. Substituting the phase function (5.2.15) into
(5.2.16) leads to the influence function,

z

x
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l 2 % k'2
p

k'
; (5:2:17)

in the region near k*. Taking the Taylor’s series expansion of "(k) near k* gives

"ðkÞ ¼ "ðk'Þ þ @"

@k

" #

k'

~kþ 1

2!

@2"

@k2
~k2 þ . . . ; (5:2:18)

where ~k ¼ k% k'. The second term on the right side of the above equation disappears

due to the definition of k* in (5.2.16). Thus, (5.2.14) becomes

!ðx; zÞ ¼ 2Re ĥðk'Þei"ðk'Þ
Z l

0
ei"kk

~k2=2dk

" #
: (5:2:19)

For a bell-shaped mountain,

!ðx; zÞ ¼
ffiffiffiffiffiffiffi
2p
p

hmae
%k'a ðl2 % k'2Þ3=4

lz1=2

" #

cos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 % k'2
p

zþ k'x% p
4

$ %
; (5:2:20)
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where

k! ¼ lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz=xÞ2 þ 1

q : (5:2:21)

Figure 5.4 shows an example of a flow over a ridge of intermediate width (l2& k2)
where the buoyancy force is important, but not so dominant that the flow becomes

hydrostatic. The nearly periodic waves located to the upper right of the mountain are
the dispersive tail of nonhydrostatic waves with k less than, but not much less than l.

In fact, the influence function, (5.2.17), is related to the energy propagation asso-
ciated with the mountain waves. The group velocity (cgm) in the frame of reference

fixed with the mountain can be obtained from (3.5.11),

cgm ¼ Uþ @o
@k

" #
iþ @o

@m
k; (5:2:22)

where m stands for mountain and

o ¼ 'Nkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2
p : (5:2:23)

m/s mb
2

–2

0

–0.3

0.3
–5 5

5

10

10

x (km)u' p'

surface u', p'

z 
(k

m
)

0

Fig. 5.4 Flow over a two-dimensional ridge of intermediate width (l2& k2 or al¼Na/U¼ 1)
where the buoyancy force is important, but not so dominant that the flow is hydrostatic. The
waves on the lee aloft are the dispersive tail of the nonhydrostatic waves (k< l, but not k<< l).
(Adapted after Queney 1948.)
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Substituting (5.2.23) into (5.2.22) leads to

cgm ¼ Uiþ cga ¼ U# Nm2

ðk2 þm2Þ3=2

" #

iþ Nkm

ðk2 þm2Þ3=2

" #

k; (5:2:24)

where cga is the group velocity relative to the air. Furthermore, the requirement of

stationary waves, cpxþU¼ 0, implies

U ¼ Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2
p : (5:2:25)

In (5.2.23), the negative sign is chosen in order to obtain positive cgz by assuming

positive k and m due to the use of one-sided Fourier transform. The relationship
among cpxi, cgm and cga is sketched in Fig. 5.5. The upstream phase speed of the

mountain wave is exactly equal to and opposite of the basic wind speed. The wave
energy propagates upward and upstream relative to the air, but is advected downstream

by the basic wind. Thus, relative to the mountain, the energy associated with the
mountain waves propagates upward and downstream. The slope of the group velocity
can be obtained by substitutingU of (5.2.25) into (5.2.24) and then calculating the slope,

cgz
cgx
¼ m

k
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

U2k2
# 1

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 # k2
p

k
¼ z

x
: (5:2:26)

In deriving the second equality, we have used (5.2.25), while in deriving the last

equality, we have used (5.2.17) near the point of stationary phase, i.e. k¼ k*.

cgmcga

U

cpx i

Fig. 5.5 A schematic illustrating the relationship among the group velocity with respect to
(w.r.t) the air (cga), group velocity w.r.t the mountain (cgm), horizontal phase speed (cpxi ), and
the basic wind. The horizontal phase speed of the wave is exactly equal and opposite to the basic
wind speed. The wave energy propagates upward and upstream relative to the air, but is
advected downstream by the basic wind. The energy associated with the mountain waves
propagates upward and downstream relative to the mountain. (After Smith 1979, reproduced
with permission from Elsevier.)
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Therefore, the point of stationary phase is the value of k corresponding to a wave with

a group velocity beam as shown in Fig. 5.5. Waves are found downstream since the
horizontal group velocity is less than the phase speed.

For general cases, such as l2< k2 or l2> k2, it is not easy to obtain analytical
solutions from (5.2.4). With the advancement of numerical techniques, such as the
Fast Fourier Transform (FFT), and computers, solutions can be approximately

obtained numerically with the implementation of proper boundary conditions.

5.2.2 Basic flow with variable Scorer parameter

In the real atmosphere, the basic wind and stratification normally vary with height. To

study the mountain waves produced by this type of basic flow, we assume that the
Scorer parameter, (5.1.6), is a slowly varying function of z. In this situation, we expect

to find a solution of (5.2.1) in form of,

ŵðk; zÞ ¼ Aðk; zÞei!ðk;zÞ; (5:2:27)

where A(k, z) is a slow-varying amplitude function, and !(k, z) is the slow-varying
phase function. Substituting (5.2.27) into (5.2.1) yields

$A!2z þ ðl
2 $ k2ÞA

! "
þ iðA!zz þ 2Az!zÞ þ Azz ¼ 0: (5:2:28)

The last termmakes a minor contribution and can be neglected, sinceA(k, z) is a slow-

varying function of z. Thus, the above equation reduces to

!z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 $ k2
p

; and (5:2:29)

@

@z
ðA2!zÞ ¼ 0: (5:2:30)

Combining the above two equations leads to

A2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 $ k2
p

¼ constant: (5:2:31)

For long (hydrostatic) waves (l2>> k2), the above equation reduces to

A2l ¼ constant: (5:2:32)

This implies that the amplitude of the vertical velocity increases (decreases) significantly
in regions of weak (strong) stratification or strong (weak) wind. For example, the

mountain wave tends to steepen when it propagates to the region below a jet stream
or a jet streak since the basic wind speed increases there.Note that in applying (5.2.27) to

solve the problem, and in neglecting the last term of (5.2.28), we have implicitly adopted
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a first-order WKBJ (Wentzel–Kramers–Brillouin–Jeffreys) approximation. A second-

orderWKBJ approximation has been used to calculatewind profile effects onmountain
wave drag (e.g., Teixeira and Miranda 2006). It is necessary to extend the WKBJ
approximation to second order for these effects to be taken into account.

Based on (5.2.32) and previous discussions, waves may amplify in certain layers
due to: (a) weaker stratification, (b) stronger wind, such as a jet stream or jet streak,

(c) nonlinear steepening, and (d) abrupt decrease in the mean density, leading to an
increase of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!s=!ðzÞ

p
, in (5.2.12).

5.2.3 Trapped lee waves

One of the most prominent features of mountain waves is the long train of wave clouds

over the lee of mountain ridges in the lower atmosphere, such as those shown in
Fig. 5.6. This type of wave differs from the dispersive tails in Fig. 5.4 in that it is

located in the lower atmosphere and there is no vertical phase tilt. It will be shown
below that this type of trapped lee waves, or resonance waves, occurs when the Scorer

parameter decreases rapidly with height (Scorer 1949).

Fig. 5.6 Satellite imagery for lee wave clouds observed at 1431 UTC October 22, 2003 over
western Virginia. Clouds originate at the Appalachian Mountains. (Courtesy of NASA.)
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The dynamics of trapped lee waves may be understood by considering a two-layer

stratified fluid system. The wave equations for the vertical displacement in Fourier
space may be written in a form similar to (5.2.1),

!̂zz þ ðl21 # k2Þ!̂ ¼ 0 for#H & z5 0 and (5:2:33a)

!̂zz # ðk2 # l22Þ!̂ ¼ 0 for 0 & z: (5:2:33b)

In this two-layer fluid system, we have assumed that l22 5 k2 5 l21. For convenience,
the ground and the interface of the lower and upper layers are assumed to be located at

z¼#H and z¼ 0, respectively. The free wave solutions may be written as

!̂1ðk; zÞ ¼ C cos"z# #
"
sin"z

! "
and (5:2:34a)

!̂2ðk; zÞ ¼ C e##z; (5:2:34b)

where " ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 # k2

q
, # ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 # l22

q
andC is a constant coefficient to be determined by

the lower boundary condition. The boundedness upper boundary condition has been

applied to exclude the exp(#z) term, and the kinematic and dynamic boundary con-
ditions at the interface, i.e. the continuities of ŵ and ŵz at z¼ 0, have also been applied.

Without enforcing a lower boundary condition, (5.2.34) represents free waves asso-
ciated with this two-layer fluid system. The resonance waves are obtained by seeking

the zeros of (5.2.34a) with z¼#H,

cot"H ¼ ##=": (5:2:35)

The resonance wave number (k'r ) may be obtained by solving the above equation

either numerically or graphically. The criterion for the existence of one or more
resonance waves may be obtained (Scorer 1949):

l21 # l22 (
p2

4H2
: (5:2:36)

A more general criterion for resonance waves of the nth mode is

2nþ 1ð Þp
2H

! "2
( l21 # l22
$ %

( 2n# 1ð Þp
2H

! "2
: (5:2:37)

The above criterion implies that in order to have resonance (lee) waves, the Scorer
parameter in the lower layer must be much greater than that in the upper layer. In other

words, the lower layer must be more stable or with a much slower basic wind speed
than the upper layer.
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In order to obtain a complete solution of the boundary value problem for a specific
obstacle, we may apply the linear lower boundary condition,

!̂1ðk;"HÞ ¼ ĥðkÞ: (5:2:38)

Substituting the above equation into (5.2.34) and taking the inverse Fourier transform
of !̂ðk; zÞ leads to the forced wave solution in the lower layer,

!1ðx; zÞ ¼ 2Re

Z 1

0

ĥðkÞðcos"z" ð#="Þ sin"zÞeikx

ðcos"Hþ ð#="Þ sin"HÞ
dk: (5:2:39)

The singularity in the denominator of the above equation corresponds to the reso-
nance mode that will produce lee waves. Equation (5.2.39) can be solved asymptotic-
ally or numerically with a given mountain-shape function (Scorer 1949; Smith 1979).

Figure 5.7 shows lee waves simulated by a nonlinear numerical model for a two-layer
airflow over a bell-shaped mountain. Due to the co-existence of the upward propagat-

ing waves and downward propagating waves, there exists no phase tilt in the lee waves.
Once lee waves form, regions of reversed cross-mountain winds near the surface

beneath the crests of the lee waves may develop due to the presence of a reversed
pressure gradient force. In the presence of surface friction, a sheet of vorticity parallel

to the mountain range forms along the lee slopes, originates in the region of high shear
within the boundary layer. The vortex sheet separates from the surface, ascends into

the crest of the first lee wave, and remains aloft as it is advected downstream by the
undulating flow in the lee waves (Doyle and Durran 2004). The vortex with recircu-
lated air is known as rotor and the process that forms it is known as boundary layer

z 
(k

m
)

0

x (km)

2

4

6

8

0–12 12 24 36

Fig. 5.7 Lee waves simulated by a nonlinear numerical model for a two-layer airflow over a bell-
shaped mountain. Displayed are the quasi-steady state streamlines. In the lower layer (below
5km apporximately) l2¼ 9x10"7 m"2, while in the upper layer, l2¼ 2x10"7 m"2. (Adapted after
Durran 1986b.)
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separation, which will be further discussed in Subsection 5.4.2 along with lee vortices.

These rotors are often observed to the lee of steep mountain ranges such as over the
Owens Valley, California, on the eastern slope of Sierra Nevada (e.g., Grubišić and

Lewis 2004). Occasionally, a turbulent, altocumulus cloud forms with the rotor and is
referred to as rotor cloud.

5.3 Nonlinear flows over two-dimensional mountains

As discussed in Sections 5.1 and 5.2, the response of a stably stratified flow over a
two-dimensional mountain ridge has been studied extensively since the 1960s. In

particular, the linear dynamics are fundamentally understood, especially due to the
development of linear theories in earlier times. Linear theory, however, begins to

break down when the perturbation velocity (u0) becomes large compared with the
basic flow (U) in some regions, so that the flow becomes stagnant. This happens when

the mountain becomes very high, the basic flow becomes very slow, or the stratifica-
tion becomes very strong. In other words, flow becomes more nonlinear when the

Froude number, F¼U/Nh, becomes small. For simplicity, the mountain height is
denoted by h. Thus, in order to fully understand the dynamics of nonlinear phenomena,
such as upstream blocking, wave breaking, severe downslope winds and lee vortices,

we need to take a nonlinear approach. Note that the reciprocal of the Froude number,
Nh/U, has also been used as a control parameter and is known as nondimensional

mountain height. In the text, we will use these two parameters interchangeably.
Nonlinear response of a continuously stratified flow over a mountain is very compli-

cated since the nonlinearity may come from the basic flow characteristics, the mountain
height, or the transient behavior of the internal flow, such as wave steepening. In this

section, we will begin with the discussion of a nonlinear theory developed by Long
(1953), then discuss the two-dimensional flow regimes for a continuously stratified flow
over a two-dimensional mountain with the help of nonlinear numerical models, and the

generation mechanisms of severe downslope winds and wave breaking.

5.3.1 Nonlinear flow regimes

The governing equation for the finite-amplitude, steady state, two-dimensional, invis-

cid, continuously and stably stratified flow may be derived (Long 1953)

r2! þ 1

e

de

dz

@!

@z
# 1

2
ðr!Þ2

! "
þN2

U2
! ¼ 0; (5:3:1)

where !(x, z)¼ z#zo is the streamline deflection at (x, z) from its far upstream,

undisturbed height zo; U and N are the far upstream basic flow speed and
Brunt–Vaisala frequency, respectively, at height zo, and e¼ (1/2)"oU

2 is the kinetic
energy of the upstream flow. In deriving (5.3.1), it has been assumed that there is no
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streamline deflection far upstream. In order to solve the above nonlinear equation,

(5.3.1), we must specify e. Under the special situation de/dz¼ 0 and when the flow is
Boussinesq, which assumes that ! is approximately constant and U(z) and N(z) are

effectively constant, (5.3.1) becomes a linear Helmholtz equation,

r2" þ l2" ¼ 0; (5:3:2)

where l¼N/U is the Scorer parameter of the basic flow far upstream. The nonlinear
lower boundary condition for (5.3.2) is given by

"ðx; zÞ ¼ hðxÞ at z ¼ hðxÞ; (5:3:3)

where h(x) is the height of the mountain surface. In other words, the nonlinear lower
boundary condition is applied on themountain surface, instead of approximately applied

at z¼ 0 as in the linear lower boundary condition, such as (5.1.10). Equation (5.3.2) with
the lower boundary condition (5.3.3) forms Long’s model, in which the steady-state

nonlinear flow is remarkably described by a linear differential equation with constant
coefficients. In fact, (5.3.2) is exactly the same differential equation which applies to

infinitesimal perturbations adopted in many linear theories and discussed earlier in this
chapter. The appropriate upper boundary condition for a semi-infinite fluid, such as the

atmosphere, is the radiation or boundedness condition, similar to (5.2.3) in the Fourier
space for a uniform basic flow over an infinitesimal mountain.

Following the procedure for treating linear flow over small-amplitude mountains,

we make the Fourier transform of (5.3.2),

"̂zz þ ðl2 % k2Þ"̂ ¼ 0: (5:3:4)

The general solution for the above equation is

"̂ ¼ "̂ðk; 0Þeimz for l > k and (5:3:5a)

"̂ ¼ "̂ðk; 0Þe%#z for l5 k; (5:3:5b)

where m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 % k2
p

, and # ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 % l2
p

. Note that the upper radiation and bounded-
ness conditions have been applied to (5.3.5a) and (5.3.5b), respectively, while the linear

lower boundary condition has been applied at z¼ 0, instead of at z¼ h(x). The
streamline deflection in the physical space can then be obtained by taking the inverse

Fourier transform

"ðx; zÞ ¼ Re

Z l

0
"̂ðk; 0Þeimzeikxdkþ

Z 1

l
"̂ðk; 0Þe%#zeikxdk

" #
; (5:3:6)

which may be obtained numerically, as with the Fast Fourier Transform numerical
technique. Other dynamical variables may be derived,
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u ¼ @y
@z

;w ¼ " @y
@x

; ! ¼ !o 1" N2

gU
y

! "
;N2 ¼ " g

!o

@!

@z
; (5:3:7)

wherey is the streamfunction defined asU(z""). The exact nonlinear lower boundary
condition, (5.3.3), can be implemented using an iterative method (e.g., Laprise and
Peltier 1989a).

Figure 5.8 shows streamlines of analytical solutions for flow over a semi-circle
obstacle for the nondimensional mountain heights Nh/U¼ 0.5, 1.0, 1.27, and 1.5. As

mentioned earlier, the nondimensional mountain height is a measure of the nonli-
nearity of the continuously stratified flow, which equals the reciprocal of the Froude

number (U/Nh). When Nh/U is small, such as Nh/U¼ 0.5, the flow is more linear.
When Nh/U increases to 1.27, the flow becomes more nonlinear and its streamlines
become vertical at the first level of wave steepening. For flow with Nh/U> 1.27, the

flow becomes statically and shear unstable (Laprise and Peltier 1989b). The vertical
streamline marks the approximate limit of applicability of Long’s model. For the

hydrostatic solution of Long’s model with a bell-shaped mountain subject to a
nonlinear lower boundary condition, this critical value is Nh/U¼ 0.85 (Miles and

Huppert 1969). Thus, for a continuously stratified, hydrostatic flow over a bell-shaped
mountain, the flow may be classified as supercritical flow when U/Nh> 1.18 (Nh/

U< 0.85) and as subcritical flow when U/Nh< 1.18 (Nh/U> 0.85). Note that in the
literature it is often misquoted U/Nh¼ 1 as the regime boundary for supercritical and

subcritical regimes for continuously stratified flow over mountains.

(a) (b)

(c) (d)

Fig. 5.8 Streamlines of Long’s model solutions for uniform flow over a semi-circle obstacle with
Nh/U¼ (a) 0.5, (b) 1.0, (c) 1.27, and (d) 1.5, whereNh/U is the nondimensional mountain height.
Note that the streamlines become vertical in (c) and overturn in (d). (Adapted fromMiles 1968.)
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As discussed in Section 3.3, there exist five flow regimes in a one-layer shallow-water
system, based on the shallow water Froude number, F ¼ U=

ffiffiffiffiffiffiffi
gH
p

, and the nondimen-

sional mountain height,M¼ hm/H (Fig. 3.3). In a nonrotating, continuously stratified
flow over a two-dimensional, bell-shaped mountain, three nondimensional control

parameters may be identified: U/Nh, h/a, and Na/U. However, only two of them are
independent. The parameter h/ameasures the steepness of mountain, andNa/U is the

nondimensional mountain width which measures the degree of hydrostatic effect (the
larger the more hydrostatic). In the hydrostatic limit (Na/U!1), the sole control
parameter is the Froude number.

Figure 5.9a shows streamlines for Long’s model for flow over a bell-shapedmountain
with a half-width (a) of 3 km with the nonlinear lower boundary condition (5.3.3)

applied. Internal waves tend to overturn in regions of reversed density gradient (stati-
cally unstable), @!/@z> 0, which corresponds to @"/@z> 1 from (5.3.7). The heights of

critical steepening levels differ slightly from those predicted by linear theory for hydro-
static waves, zo¼ (nþ 3/4)(2pU/N), where n is an integer, just over the crest of the

topography (Laprise and Peltier 1989a). In Fig. 5.9a, the first steepening level for
nonlinear, hydrostatic waves is about 2.36km. With a narrower mountain, such as

a¼ 1km (Fig. 5.9b), a dispersive tail, caused by nonhydrostatic dispersion, is produced.
The downstream displacement of the steepened region is caused by both the nonhydro-
static effect and the nonlinearity of the interior flow and the lower boundary condition.

WhenNa/U>> 1, the flow approaches the hydrostatic limit. This control parameter can
be obtained by comparing the scales of @2w0/@x2 andN2w0/U2 of (5.1.5). Direct compar-

ison of @2w0/@x2 and @2w0/@z2 terms by scale analysis leads to the conclusion that h/a is a
control parameter of nonhydrostatic effect. The Froude number, U/Nh, can also be

derived by comparing the scales of @2w0/@z2 and N2w0/U2 of (5.1.5).

(a) (b)
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Fig. 5.9 (a) Streamlines for Long’s model solution over a bell-shaped mountain with
U¼ 5m s#1, N¼ 0.01 s#1, hm¼ 500m and a¼ 3 km; and (b) same as (a) except with a¼ 1 km.
An iterative method is applied in solving the nonlinear equation (5.3.2) with the nonlinear lower
boundary condition (5.3.3) applied. Note that the dispersive tail of the nonhydrostatic waves is
present in the narrower mountain case (case(b)). (Adapted from Laprise and Peltier 1989a.)
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Long’s nonlinear theory advances our understanding of orographically forced flow
considerably. However, the constant upstream condition assumed by Long may not

be necessarily consistent with the flow established naturally by transients, especially
when blocking occurs (Garner, 1995). In the real atmosphere, turbulence will come

into play and produce vertical mixing in a subcritical (overturning) flow. To simulate a
subcritical flow, one may consider using a laboratory tank experiment or adopting a
nonlinear numerical model. As mentioned earlier, flow may become stagnant, where

the total horizontal wind speed reduces to zero, in essentially two regions: in the
interior of the fluid over the mountaintop or on the lee slope and along the upstream

slope of the mountain.
Flow stagnation in a two-dimensional flow is responsible for flow recirculation,

while stagnation in a three-dimensional flow is responsible for flow splitting. Flow
stagnanation in the interior of the fluid is due to nonlinear wave steepening, which

may lead to wave breaking and wave overturning over the lee slope, while the flow
stagnation at the upstream surface of the mountain is called flow blocking. Although

the two-dimensional, nonrotating, hydrostatic flow may be simply classified as
supercritical and subcritical regimes, as discussed above, the transient flow behavior
becomes much more complicated. Figure 5.10 shows the time evolution for the ! and
u0 fields for a hydrostatic flow over a two-dimensional, bell-shaped mountain

–128 –128 –128 –1280 128

50.4 12.6 50.4

F

13.9

6.9

0.0
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11.7

5.9
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3.7

0.0

0.7

Ut /a 12.6

5.3
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0.0
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0 128 0 128 0 128

Fig. 5.10 Nonlinear flow regimes for a two-dimensional, hydrostatic, uniform flow over a bell-
shaped mountain as simulated by a numerical model, based on the Froude number (F¼U/Nh).
F varies from 0.5 to 1.3, which gives four different flow regimes as discussed in the text.
Displayed are the ! fields (left two columns) and the u0 fields (right two columns) for two
nondimensional times Ut/a¼ 12.6 and 50.4. The dimensional parameters are: N¼ 0.01m s"1,
h¼ 1 km, a¼ 10 km, and U¼ 5, 7, 11, and 13m s"1 correspondig to F¼ 0.5, 0.7, 1.1, and 1.3,
respectively. A constant nondimensional physical domain height of 1.7"z (where "z¼ 2pU/N) is
used. Both the abscissa and ordinate in the small panels are labeled in km. (Adapted after Lin
and Wang 1996.)
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simulated by a numerical model at nondimensional times Ut/a¼ 12.6 and 50.4 for F

ranging from 0.5 to 1.3. Four regimes are identified: (I) flow with neither wave
breaking aloft nor upstream blocking (e.g., 1.12"F), (II) flow with wave breaking

aloft in the absence of upstream blocking (e.g., 0.9"F< 1.12), (III) flow with both
wave breaking and upstream blocking, but where wave breaking occurs first (e.g.,
0.6"F< 0.9), and (IV) flow with both wave breaking and upstream blocking, but

where blocking occurs first (e.g., 0.3"F< 0.6). Note that the exact Froude numbers
separating these flow regimes might be different in other numerically simulated

results because these numbers are sensitive to some numerical factors, such as the
grid resolution, domain size, numerical boundary conditions, and numerical scheme

adopted in different numerical models.
In regime I (e.g., F¼ 1.3 in Fig. 5.10), neither wave breaking nor upstream blocking

occurs, but an upstream propagating columnar disturbance does exist. The basic flow
structure in regime I resembles linear mountain waves. Columnar disturbances are
wave modes with constant phase in the vertical, which permanently alter the upstream

temperature and horizontal velocity fields as they pass through the fluid (e.g.,
Pierrehumbert and Wyman 1985). A columnar disturbance may be generated by a

sudden imposition of a disturbance, such as the impulsive introduction of a mountain
in a uniform flow. Regime II (e.g., F¼ 1.1 in Fig. 5.10) resembles weakly nonlinear

mountain waves. In this flow regime, an internal jump forms at the downstream edge
of the wave-breaking region above the mountain, propagates downstream, and then

becomes quasi-stationary. The region of wave breaking also extends downward
toward the lee slope. After the internal jump travels farther downstream, a stationary

mountain wave becomes established in the vicinity of the mountain above the
dividing streamline, which is induced by wave breaking. A high-drag state is pre-
dicted in this flow regime. In addition, a vertically propagating hydrostatic gravity

wave is generated by the propagating jump and travels with it. Along the lee slope,
a strong downslope wind develops. Static and shear instabilities may occur locally in

the region of wave breaking. The computed critical Froude number for wave
breaking is about 1.12, which agrees well with the value 1.18 found by Miles and

Huppert (1969).
In regime III (e.g., F¼ 0.7 in Fig. 5.10), the internal jump over the lee slope

propagates downstream in the early stage and then becomes quasi-stationary. Note
that the propagation of the downstream internal jump is sensitive to the upstream
numerical boundary condition, which may cause the internal jump to retrogress

upstream. To avoid this artificial effect from the numerical model, the upstream
boundary should be placed far enough so as to effectively reduce its impact. Also,

the layer depth of blocked fluid upstream is independent of the Froude number. In
regime IV (e.g., F¼ 0.5 in Fig. 5.10), a significant portion of the upstream flow is

blocked by the mountain. The presence of wave breaking aloft is not a necessary
condition for upstream blocking to occur. A vertically propagating gravity wave is

generated by the upstream reversed flow and travels with it. The speed of the upstream
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reversed flow is proportional to h/a. The surface drag increases abruptly from regime I

to II, while it decreases gradually from regime II (III) to III (IV).
Flow regimes may also be classified in different ways, depending upon particular

characteristics. For example, two-dimensional, uniform flow over an isolated moun-
tain has been classified as either a quasi-linear regime, high-drag state, or blocked
state, based on Nh/U and NU/g (Stein 1992). In addition, the flow response of

a three-dimensional flow over a long ridge is very different from that of a two-
dimensional flow when Nh/U is large. For example, the onset of wave breaking and

the transition to the high-drag state in the three-dimensional flow was found to be
accompanied by an abrupt increase in deflection of the low-level flow around the

ridge (Epifanio and Durran 2001). The increased flow deflection is produced at least
in part by upstream-propagating columnar disturbances forced by the transition to

the high-drag state.

5.3.2 Generation of severe downslope winds

Severe downslope winds over the lee of a mountain ridge have been observed in

various places around the world, such as the chinook over the Rocky Mountains,
foehn over the Alps, bora over the Dinaric Alps, zonda over the Agentina mountains,

berg wind in South Africa, Canterbury-nor’wester in New Zealand, halny wiatr in the
mountains of Poland, Santa Ana winds in southern California, and Diabolo winds in

San Francisco Bay Area. One well-known event is the January 11, 1972 windstorm
which occurred in Boulder, Colorado, and which reached a peak wind gust as high as

60m s!1 and produced severe damage in the Boulder area (Fig. 3.4a).
The basic dynamics of the severe downslope wind can be understood from the

following two major theories: (a) resonant amplification theory (Clark and Peltier

1984), and (b) hydraulic theory (Smith 1985), along with later studies on the effects
of instabilities, wave ducting, nonlinearity, and upstream flow blocking. These will be

reviewed in the following.

a. Resonant amplification theory

Idealized nonlinear numerical experiments indicate that a high-drag (severe-wind) state
occurs after an upward propagating mountain wave breaks above a mountain, such as
happens in Fig. 5.10 (F¼ 0.5, 0.7, and 1.1), in which severe downslope winds develop in

a uniform flow over a bell-shapedmountain. The wave-breaking region is characterized
by strong turbulent mixing (where Ri< 0.25), with a local wind reversal on top of it. As

mentioned in Section 3.8, the wind reversal level coincides with the critical level for a
stationary mountain wave, and thus is also referred to as the wave-induced critical level.

The lowest wave-induced critical level starts to develop at the height z¼ 3!z/4# 2.36,
3.30, and 5.18km for cases of F¼ 0.5, 0.7, and 1.1, respectively (at Ut/a¼ 12.6 in

Fig. 5.10), where !z (¼ 2pU/N) is the hydrostatic vertical wavelength. A supercritical
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flow with a severe downslope wind can be found over the lee slope under the wave

breaking region, which undergoes a transition from subcritical flow over the upwind
slope. The maximum perturbation wind over the lee slope is much higher than those
predicted by linear and weakly nonlinear theories. At a later stage, the well-mixed layer

(wake) deepens, the depth of internal hydraulic jump (critically steepened streamlines)
extends to a great depth, the flow above the initial wave-induced critical level is less

disturbed compared to that in the lower layer, and severe winds develop over the lee
slope and below the well-mixed layer (Ut/a¼ 50.4 in Fig. 5.10).

The above example implies that the wave breaking region aloft acts as an internal
boundary which reflects the upward propagating waves back to the ground and

produces a high-drag state through partial resonance with the upward propagating
mountain waves. This is shown by performing nonlinear numerical simulations for

stratified flow over a bell-shaped mountain (Fig. 5.11). In these simulations, the basic
flow reverses its direction at a prescribed critical level (zi). In the absence of shear
instability associated with the basic flow, and when the basic-flow critical level is

located at a nondimensional height of zi/!z¼ 3/4þ n (n is an integer) above the sur-
face, nonlinear resonant amplification occurs between the upward propagating waves

generated by the mountain and the downward propagating waves reflected from the
critical level. This leads to an extremely large Reynolds stress or surface drag and

severe downslope winds (Figs. 5.11a and 5.11c). In other words, the flow is on
resonance. On the other hand, when the basic flow critical level is located at a
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Fig. 5.11 Resonant amplification mechanism for severe downslope winds developed for basic
flow with a prescribed critical level (Z i) over a bell-shaped mountain. Displayed are the
evolution of the Reynolds stress, h"ou0w0i, profile for on-resonance flows with: Z i/!z¼:
(a) 0.75 and (c) 1.75 and for the off-resonance flow with (b) Z i/!z¼ 1.15, where !z¼ 2pUo/N.
The flow and orographic parameters are: N¼ 0.02 s#1, U(z)¼Uotanh[(z#zi)/b] with
Uo¼ 8m s#1, b¼ 600m, Rimin¼N2/(Uo/b)

2¼ 2.25 (minimum Ri), h¼ 300m, and a¼ 3 km.
The Froude number (Uo/Nh) is 1.33. Height (z) is in km. The profiles in the figure range in
time from 0 to 2880Dt, 1440 to 2880Dt, and 2080 to 4240Dt for panels (a) to (c), respectively,
where Dt¼ 5 s. Some of the profiles are sequentially numbered from earliest to latest (labeled by
small numbers). (After Clark and Peltier 1984.)
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nondimensional height off zi/!z¼ 3/4þ n, such as 1.15, there is no wave resonance and

no severe downslope winds generated (Fig. 5.11b). Because the severe downslope
winds are developed by resonance between upward and downward waves, this
mechanism is referred to as the resonant amplification mechanism.

Based on numerical simulations with finer-grid resolutions, three distinct stages for
the development of severe downslope winds are identified (Scinocca and Peltier 1993).

(1) Local static (buoyancy) instability develops when the wave steepens and overturns,
thus producing a pool of well-mixed air aloft (Figs. 5.12a–b). (2) A well-defined large-

amplitude stationary disturbance is generated over the lee slope. In time, small-scale
secondary Kelvin–Helmholtz (K–H) (shear) instability develops in local regions of

enhanced shear associated with flow perturbations caused by the large-amplitude dis-
turbance (Figs. 5.12c–d). (3) The region of enhanced wind on the lee slope expands
downstream, eliminating the perturbative structure associated with the large-amplitude

Fig. 5.12 Three distinct stages for the development of severe downslope winds, as revealed by
the triply-nested numerical solutions. See text for details. Long’s (1953) nonlinear analytical
solution is used to initiate the flow. Displayed are the potential temperature fields over the lee
slope at model times of (a) 0, (b) 20, (c) 66, (d) 96, (e) 160, and (f) 166 min. The grid resolutions
for the outer, middle, and inner domains are 500m, 50m, and 162/3m respectively. A bell-shaped
mountain with h¼ 165m and a¼ 3 km is used. The upstream flow parameters areU¼ 3.3m s#1

and N¼ 0.02 s#1. Thus, F¼U/Nh¼ 1. (Adapted after Scinocca and Peltier 1993.)

5.3 Nonlinear flows over two-dimensional mountains 133

Cambridge Books Online © Cambridge University Press, 2010Downloaded from Cambridge Books Online by IP 129.15.109.254 on Mon Jan 19 18:15:57 GMT 2015.
http://dx.doi.org/10.1017/CBO9780511619649.006

Cambridge Books Online © Cambridge University Press, 2015



stationary disturbance (Figs. 5.12e–f). The K–H instability dominates the flow in this

mature windstorm state. Thus, static instability helps explain the initiation of wave-
induced critical level and the downstream expansion of the severe downslope winds.

Once wave breaking occurs, it induces a critical level in the shear layer with low Ri

and thus establishes a flow configuration favorable for wave ducting in the lower
uniform flow layer, similar to that in case 3 of Table 4.1 and Fig. 4.12b. Effects of

the wave ducting on the development of high-drag states for a flow with uniform wind
and constant static stability are illustrated in Fig. 5.13. Shortly after the occurrence of

wave breaking, regions with local Ri< 0.25 form in the vicinity of the wave breaking
(Fig. 5.13a). This turbulent mixing region is expanding downward and downstream

due to strong nonlinear effects on the flow with low Richardson number near the
critical level (Fig. 5.14a). The turbulent mixing region expands downward by wave
reflection, overreflection, and ducting from the wave-induced critical level and accel-

erates downstream by the nonlinear advevction (Fig. 5.13b).
Effects of wave reflection and/or overreflection are evidenced by the fact that the

wave duct with severe downslope wind is located below the region of the turbulent
mixing region. Note that the expansion of the turbulent mixing region provides a

maintenance mechanism for the existence of the wave duct below it and above the lee
slope, because the reflectivity in this region is about 1 according to linear theory.

Without this almost perfect reflector, the wave below cannot bemaintained andwould
lose most of its energy due to dispersion. In fact, wave overreflection can occur,

according to the wave ducting theory discussed in Chapter 4, through the extraction
energy from the well-mixed region and thus contribute to the acceleration of down-
slope winds. In the absence of nonlinearity (Fig. 5.14b), the wavebreaking region does

not expand downward to reduce the depth of the lower uniform wind layer. This, in

(a) (b)
1.70

1.28
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0.43

0.00
–124 –61 2 65 128 –124 –61 2 65 128
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z /
 λ
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Fig. 5.13 Wave ducting as revealed by the time evolution of horizontal wind speeds and regions
of local Ri< 0.25 (shaded) for a flow with uniform wind and constant static stability over a
mountain ridge atUt/a¼ (a) 12.6, and (d) 50.4. The Froude number of the uniform basic wind is
1.0. (Adapted after Wang and Lin 1999.)
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turn, prohibits the formation of the severe downslope wind and internal hydraulic

jump. These results indicate that the nonlinear wave ducting has contributed to the
downward and downstream expansion of the turbulent mixing region.

b. Hydraulic theory

Based on the similarity of flow configurations of severe downslope windstorms and

finite-depth, homogeneous flow over a mountain ridge, a hydraulic theory was pro-
posed to explain the development of severe downslope winds (Smith 1985). The

hydraulic theory attributes the high-drag (severe-wind) state to the interaction
between a smoothly stratified flow and the deep, well-mixed, turbulent ‘‘dead’’ region

above the lee slope in the middle troposphere. When a high-drag state develops, a
dividing streamline encompasses this well-mixed region of uniform density (!c in

Fig. 5.15a). Assuming the upstream flow is uniform in U and N and the general flow
is smooth, nondissipative, hydrostatic, Boussinesq and steady (Fig. 5.15a), the non-
linear, hydrostatic governing equation can be simplified from (5.3.2),

"zz þ l2" ¼ 0; (5:3:8)

The horizontal velocity can be derived from (5.3.7),

u ¼ Uð1$ "zÞ: (5:3:9)

The lower boundary condition is given by (5.3.3). By assuming no disturbance above
the upper dividing streamline (Ho), the pressure at z¼Ho is constant, i.e. p(x,Ho)¼ p*. If

the air in the turbulent region is hydrostatic in the mean and well mixed with a density
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Fig. 5.14 Effects of nonlinearity on the development of severe downslope winds: (a) Potential
temperature field from nonlinear numerical simulations for a basic flow withRi¼ 0.1 and F¼ 2;
(b) Same as (a) except from linear numerical simulations. The contour interval is 1K in both (a)
and (b). (Adapted after Wang and Lin 1999.)
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of !c, the pressure along the lower branch of the dividing streamline is p(x,

Hoþ "c)¼ p*#!cg"c, where "c is the vertical displacement of the lower dividing stream-
line (H1). For a steady-state flow, the Bernoulli equation along z¼Hoþ "c can bewritten

pþ ð1=2Þ!u2 þ !cgz ¼ constant: (5:3:10)

At z¼Hoþ "c, we have

"z ¼ 0: (5:3:11)

By assuming a wave-like solution in the vertical,

"ðx; zÞ ¼ AðxÞ cos lzþ BðxÞ sin lz; (5:3:12)

the nonlinear solution for high-drag state can be obtained,

~h ¼ ~"c½cosð ~Ho þ ~"c # ~hÞ'; (5:3:13a)

~A ¼ ~"c cosð ~Ho þ ~"cÞ; and (5:3:13b)

~B ¼ ~"c sinð ~Ho þ ~"cÞ; (5:3:13c)

where h(x) is the terrain height function and all coefficients and parameters are
nondimensionalized by l (¼N/U) and denoted by tildes ‘‘(’’. The above solution can

be solved graphically or numerically as long as ~h and ~Ho are known.
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Fig. 5.15 A severe downslope windstorm simulated by a hydraulic theroy. (a) Schematic of an
idealized high-drag state flow configuration. A certain critical streamline divides and
encompasses a region of uniform density (!c), which is called the dividing streamline. Ho and
H1 denote the heights of upstream dividing streamline and the downstream lower dividing
streamline, respectively. (b) An example of transitional flow over a mountain. The dimensional
values of the flow and orographic parameters areU¼ 20m s#1,N¼ 0.01 s#1,Ho¼ 9.42 km, and
h¼ 2 km. This gives F¼U/Nh¼ 1. (Adapted after Smith 1985.)
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Figure 5.15 shows an example of a severe downslope windstorm simulated by a

hydraulic theory with F¼ 1. The descent of the lower dividing streamline begins over
the point where the mountain begins to rise and becomes more rapid over the

mountain peak. The final downward displacement of the dividing streamline is a
large fraction of the initial layer depth. The flow speed after transition to supercritical
flow over the lee slope from subcritical flow over the upslope is greatest near the

surface and is several times the upstream value. The flow shown in Fig. 5.15b is
qualitatively similar to the 1972 Boulder windstorm observations (Fig. 3.4a). In

addition to the above solution, the strength of the transitional flow can be measured
by the pressure drag on the mountain per unit length,

D ¼ !oN
2

6
ðHo #H1Þ3: (5:3:14)

The hydraulic theory of severe downslope winds was confirmed by numerical experi-
ments of stratified fluid flow (e.g., Durran and Klemp 1987; Bacmeister and

Pierrehumbert 1988) and laboratory tank experiments (e.g., Rottman and Smith 1989).
Note that in order to apply the hydraulic theory to the prediction of the steady-state flow

over amountain, it is necessary to specify the initial height of the dividing streamline line.
Thus, the dividing streamline height cannot be determined a priori if the critical level is
induced bywave breaking. This, in turn, implies that the hydraulicmodel is limited to the

consistent check of a severe wind state and cannot be used for prediction.

c. Applications of resonant amplification and hydraulic theories

Some discrepancies have been found between the resonant amplification and hydrau-
lic theories of severe downslope windstorms. One discrepancy is the different critical

level heights for high-drag (severe wind) states predicted by these two theories. The
resonant amplification theory predicts the wave-induced critical (wave breaking) level

at a height of z/"z¼ 3/4þ n (n an integer), which helps produce severe downslope
winds at later times. On the other hand, the hydraulic theory predicts critical level

heights falling within the range of z/"z¼ 1/4þ n to 3/4þ n during a high-drag state.
This discrepancy appears to be caused by different stages of the severe downslope
wind state being used for prediction. In fact, in earlier stages of a high-drag state, the

resonant amplification theory is consistent with weakly nonlinear theories which
indicate that the initiation of a high-drag transitional flow begins with linear reso-

nance (Grimshaw and Smyth 1986), and with nonlinear numerical simulations which
indicate that the lowest initial wave-induced critical level is near 3/4 (Lin and Wang

1996). It can also be seen clearly from Fig. 5.10 that the wave-induced critical level for
a severe-wind state is shifted to a lower level at later time. Therefore, it appears that the

resonant amplification theory focuses on the ealier stage of severe downslope wind
development, while the hydraulic theory focuses on the later stage.

Part of the discrepancies may be related to the usage of critical level height as the
control parameter to determine a high-drag state, as often adopted in many previous
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studies. Based on some numerical experiments, the lower uniform flow layer depth

appears to be a more appropriate scale to use (Wang and Lin 1999). Figure 5.16
indicates that the high-drag state is sensitive to the lower stable layer depth (Durran
1986a). Using the lower layer depth as the control parameter, predictions of both high-

and low-drag states from several previous numerical studies are shown to be consist-
ent, and the high-drag state does depend on the mountain height, which is consistent

with the hydraulic theory. In addition, some discrepancies among previous studies
result from the choice of different Richardson numbers and basic flow velocity profiles

(e.g., Teixeira et al. 2005).

5.4 Flows over three-dimensional mountains

Although the two-dimensional mountain wave theories discussed in previous sections

helped explain some important flow phenomena generated by infinitely long ridges, such
as upward propagating mountains waves, lee waves, wave overturning and breaking,

and severe downslope winds, in reality most of the mountains are of three-dimensional,
complex form. The basic dynamics of flow over complex terrain can be understood by

considering flow over an idealized, three-dimensional, isolatedmountain. In this section,
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Fig. 5.16 The dependence of high-drag states on the lower-layer depth, as revealed by the
isentropes for airflow in a two-layer atmosphere at Ut/a¼ 25, when N1h/U¼ 0.5, where N1 is
the Brunt–Vaisala frequency of the lower layer, and the depth of the lowest, most stable
layer (U/N1) is: (a) 1, (b) 2.5, (c) 3.5, and (d) 4. The lower layer resembles: (a) supercritical
flow, (b) a propagating hydraulic jump, (c) a stationary jump, and (d) subcritical flow. (After
Durran 1986a.)
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wewill discuss a linear theory of a stratified flow past an isolatedmountain, aswell as the

generation of lee vortices in a nonlinear flow over an isolated mountain.

5.4.1 Linear theory

In the following, the two-dimensional, linear mountain wave theory developed in
Section 5.2.1 is extended to three-dimensional flow over an isolated mountain.

Consider a steady-state, small-amplitude, adiabatic, inviscid, nonrotating, stratified,
Boussinesq fluid flow with uniform basic velocity (U) and Brunt–Vaisala frequency

(N) over a three-dimensional topography h(x, y). The governing linear equations can
be derived from (5.1.1)–(5.1.4),

U
@u0

@x
þ 1

!o

@p0

@x
¼ 0; (5:4:1)

U
@v0

@x
þ 1

!o

@p0

@y
¼ 0; (5:4:2)

U
@w0

@x
# g

"0

"o
þ 1

!o

@p0

@z
¼ 0; (5:4:3)

@u0

@x
þ @v

0

@y
þ @w

0

@z
¼ 0; (5:4:4)

U
@"0

@x
þN2"o

g
w0 ¼ 0: (5:4:5)

Using (5.1.19), the above equations can be combined into a single equation of the
vertical displacement (#),

r2#xx þ
N2

U2
r2

H# ¼ 0: (5:4:6)

Equation (5.4.6) can be solved by taking the double Fourier transform in x and y to
obtain

#̂zz þm2#̂ ¼ 0; (5:4:7)

where

m2 ¼ K2ðN2=k2U2 # 1Þ; (5:4:8)

and K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ l2
p

is the horizontal wave number. The double Fourier transform pair

is defined as
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!̂ðk; l; zÞ ¼ 1

4p2

Z 1

$1

Z 1

$1
!ðx; y; zÞe$iðkxþlyÞdxdy; and (5:4:9a)

!ðx; y; zÞ ¼
Z 1

$1

Z 1

$1
!̂ðk; l; zÞeiðkxþlyÞdkdl: (5:4:9b)

The solution to (5.4.7) in the Fourier space can be found

!̂ðk; l; zÞ ¼ !̂ðk; l; 0Þeimðk;lÞz: (5:4:10)

Similar to the two-dimensional mountain wave theory, as discussed in Section 5.2,

there exist two flow regimes: (I) N2/k2U2> 1, and (II) N2/k2U2< 1. For upward
propagating waves (regime I), the sign of m must be the same as the sign of k, in

order to satisfy the upper radiation condition. On the other hand, for evanescent
waves (regime II), the positive root of (5.4.8) must be chosen, i.e.

!̂ðk; l; zÞ ¼ !̂ðk; l; 0Þe$miðk;lÞz; (5:4:11)

where mi is defined as K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$N2=k2U2

p
. The linear lower boundary condition is

!ðx; y; z ¼ 0Þ ¼ hðx; yÞ; (5:4:12)

which can be transformed into the Fourier space,

!̂ðk; l; 0Þ ¼ ĥðk; lÞ: (5:4:13)

From the definition of inverse Fourier transform and (5.4.13), we have

!ðx; y; zÞ ¼
Z 1

$1

Z 1

$1
ĥðk; lÞeimðk;lÞzeiðkxþlyÞdkdl: (5:4:14)

Now let us consider a three-dimensional (circular) bell-shaped mountain

hðx; yÞ ¼ h

ðr2=a2 þ 1Þ3=2
; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; (5:4:15)

where h and a are the mountain height and horizontal scale, respectively. The Fourier

transform of (5.4.15) is,

ĥðk; lÞ ¼ ha2

2p
e$aK: (5:4:16)

The problem may be further simplified by using the hydrostatic approximation,
i.e. neglecting the first term of (5.4.3). Note that under the hydrostatic approx-
imation, we require that Na/U>> 1. The solution, (5.4.14), may be reduced to a

single integration by converting it into cylindrical coordinates, and asymptotic
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solutions for the flow aloft and the flow near the ground may thus be obtained

(Smith 1980). Substituting (5.4.16) into (5.4.14) and nondimensionalizing it
according to

ð~x; ~yÞ ¼ ðx=a; y=aÞ; ð~z; ~!Þ ¼ ðNz=U;N!=UÞ; ð~k; ~l; ~KÞ ¼ ðka; la;KaÞ; (5:4:17)

yields

~!ð~x; ~y; ~zÞ ¼ 1

F

Z 1

$1

Z 1

$1
e$

~Kei ~m~zeið
~k~xþ~l~yÞd~kd~l; (5:4:18)

where F is the Froude number, as defined earlier. As discussed earlier, the linear theory

holds for a large Froude number flow. On the other hand, for a small Froude number
flow, nonlinear effects become more important and cannot be ignored. This will be

discussed in the next subsection.
Equation (5.4.18) or (5.4.14) can also be solved numerically by applying a two-

dimensional numerical FFT algorithm. Figure 5.17 shows an example of a linear
hydrostatic flow passing over a bell-shaped mountain with a Froude number of

100. Near the surface, the pattern of vertical displacement resembles the surface
topography, (5.4.15), as required by the lower boundary condition. Slightly aloft
from the surface at ~z ¼ p=4 (Fig. 5.17a), a region of downward displacement

forms a U-shaped disturbance over the lee slopes of the mountain and extends
some distance downstream. At a level further aloft, such as ~z ¼ p (Fig. 5.17b), the

region of downward displacement widens, moves upstream, and is replaced by a
U-shaped pattern of upward displacement. The general upstream shift of down-

ward and upward displacement is caused by the upstream phase tilt of upward
propagating hydrostatic waves. At greater heights, the zone of disturbance con-

tinues to broaden, the disturbance directly in the lee of the mountain disappears,
the patterns of upward and downward displacement become more wavelike, due

to wave dispersion.
The U-shaped patterns of vertical displacements are explained by a group velocity

argument (Smith 1980). The dispersion relation for internal gravity waves in a stag-

nant Boussinesq fluid may be reduced from (3.6.10)

o ¼ &NKffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ l2 þm2
p : (5:4:19)

With the hydrostatic approximation the above equation becomes

o ¼ &NK

m
: (5:4:20)

As discussed in Chapter 4, the energy propagation can be described by the group

velocity components, which are
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cgx ¼
@o
@k
¼ " Nk

mK
; cgy ¼

@o
@l
¼ " Nl

mK
; cgz ¼

@o
@m
¼ #NK

m2
(5:4:21)

For steady-state waves on a basic flow, replacing o by the intrinsic frequency Uk in
(5.4.20) leads to

m ¼ "NK

Uk
: (5:4:22)

AddingU to cgx, the components of the group velocity in a frame fixed with the Earth

become

cgmx ¼
Ul2

K2
; cgmy ¼

$Ukl

K2
; cgmz ¼

U2k2

NK
: (5:4:23)
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(a) Nz / U = π/4
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0

+

Fig. 5.17 Three-dimensional, linear, hydrostatic stratified flow over a bell-shaped mountain
(5.4.15) with F¼U/Nh¼ 100. Displayed are the nondimensional vertical displacements at
~z ¼ Nz=U ¼: (a) p/4 and (b) p. U-shaped disturbances are associated with the upward
propagating wave energy. Solid and dashed curves represent positive and negative values of
vertical displacement. The cross marks the position of the mountain peak. The bold, dashed
circle is the topographic contour at r¼ a, where r is the distance (radius) from the center of the
mountain. These wave patterns are computed by evaluating (5.4.18) numerically using a two-
dimensional FFT. (Adapted after Smith 1980.)
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In the coordinates fixed with the mountain or Earth, wave energy propagates from the

energy source, i.e. the mountain, along straight lines with slopes

x

z
¼ cgmx

cgmz
;
y

z
¼

cgmy

cgmz
;
y

x
¼

cgmy

cgmx
: (5:4:24)

The slope on the horizontal plane y/x may be evaluated from (5.4.23) and (5.4.24),

y

x
¼ " k

l
; (5:4:25)

which is the geometric condition that the phase lines passing through the point (x,y)

are radial lines from the origin. Using (5.4.23)–(5.4.24) again gives

y2 ¼ Nxz

UK
: (5:4:26)

Since the mountain is the source of forcing, the horizontal wavenumber may be

approximated by the mountain scale, i.e. K# 1/a, which yields

y2 ¼ Nax

U

! "
z: (5:4:27)

Thus, the energy concentrates in a parabola or a U-shaped pattern at a certain height,
as shown in Fig. 5.17.

In the above theory, the basic flow speed and Brunt–Vaisala frequency are assumed
to be constant with height. In the real atmosphere, they normally vary with height. As

in the two-dimensional mountain wave problem, a rapid decrease of the Scorer
parameter with height leads to the formation of trapped lee waves. The formation of

three-dimensional trapped lee waves is similar to that of Kelvin ship waves over the
water surface. Figure 5.18 shows an example of the cloud streets associated with three-

dimensional trapped lee waves produced by airflow past a mountainous island. The
wave pattern is generally contained within a wedge with the apex at the mountain. The
three-dimensional trapped lee waves are composed by transverse waves and diverging

waves, as depicted in Fig. 5.19. The transverse waves lie approximately perpendicular
to the flow direction, and are formed by waves attempting to propagate against the

basic flow but that have been advected to the lee. The formation mechanism of
transverse waves is the same as that of the two-dimensional trapped lee waves.

Unlike the transverse waves, the diverging waves attempt to propagate laterally
away from the mountain and have been advected to the lee. Also, the diverging

waves have crests that meet the incoming flow at a rather shallow angle. Both of the
transverse and diverging waves are mathematically associated with a stationary phase

point, and the significant disturbance is confined within a wedge angle of about 198280

with the x-axis.
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5.4.2 Generation of lee vortices

The above linear theory of three-dimensional, stratified flow over mountains provides

an in-depth understanding of the dynamics, but it is valid only for high Froude
number flow due to the limitations of the small-amplitude (linear) assumption.

When the Froude number decreases, the perturbations generated by the mountain
become larger and the flow becomes more nonlinear. Due to mathematical intract-

ability, many observed phenomena associated with nonlinear flow over mountains,

Fig. 5.18 Satellite imagery of three-dimensional trapped lee waves induced by the South
Sandwich Islands in the southern Atlantic Ocean on September 18, 2003. The wave pattern is
similar to that of the ship waves sketched in Fig. 5.19. (From Visible Earth, NASA.)

  DIVERGING

WAVE CRESTS

TRANSVERSE

WAVE CRESTS

19°28'

Fig. 5.19 Schematic of transverse (bold-dashed) and diverging (solid) phase lines for a deep
water ship wave. (Adapted after Sharman and Wurtele 1983.)
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such as flow recirculation, stagnation points, flow splitting, and lee vortices, have been
carried out in tank experiments and by nonlinear numerical simulations.

a. Boundary layer separation

The flow pattern produced by laboratory tank experiments for three-dimensional,
stratified flow with relatively large Froude numbers (e.g., F> 2) past a bell-shaped

mountain is similar to that predicted by linear theory as described in Subsection 5.4.1.
Flow patterns are dramatically different for flow with smaller Froude numbers.

Figure 5.20 shows a stratified flow with F¼ 0.4 past an isolated mountain in a tank
experiment. The most eye-catching phenomenon is a pair of counter-rotating vortices

formed in the lee of the obstacle. The formation of this pair of lee vortices is attributed
to the boundary layer separationmechanism (Batchelor 1967; Hunt and Snyder 1980),

as briefly summarized in the following.When the Reynolds number (Re) is sufficiently
high (where Re¼UL/!, U is the velocity scale, L length scale and ! kinematic
viscosity), the boundary-layer flow develops a region of flow reversal near the surface

due to an opposing pressure gradient in the direction of flow. The reversed flow meets
the incoming flow and forms a stagnation point at which the streamline breaks away

from the surface of the obstacle. This process is known as boundary layer separation.
Mathematically, the streamline of boundary layer separation is a line whose points are

singular points of the solutions of the equations of motion in the boundary layer.

(a)

(b)

Na

Ss

Ss

Ss
Ss Sa

Na

Ns

Ns

Sa

Fig. 5.20 (a) Side view of the mean surface shear stress pattern and streamlines on the center
plane of symmetry for a three-dimensional, stratified, viscous flow with F¼U/Nh¼ 0.4 past an
obstacle with circular contours (e.g., bold solid curve in (b)). In the figure, N and S denote nodes
and saddle points, respectively, and subscripts a and s denote attachment and separation,
respectively. (b) As (a) but for a plane view of the pattern of surface stress. (Adapted after
Hunt and Snyder 1980.)
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For three-dimensional, nonlinear, stratified viscous flow past a symmetric mountain,

boundary layer separation first occurs on the center vertical plane before the mountain
peak is reached. During the process, several singular points can form. Over the upslope

on the center plane, an attachment point (node of attachment) Na forms, which forces
part of the flow to recirculate back upstream along the upslope, where it meets the
incoming flow, and forms another stagnation point (saddle point of separation) Ss
(Fig. 5.20a). Downstream of the obstacle on the center vertical plane, flow separates
and forms a third stagnation point(s) (saddle points of attachment) Sa. The separated

flow recirculates on this vertical plane, meets with the downslope flow and forms
another saddle point of separation (Ss) over the lee slope. On the surface (Fig. 5.20b),

the recirculated flow from Na forces the incoming flow to split (i.e. flow splitting) at Ss
and part of the split flow recirculates and forms a pair of stationary lee vortices centered

at the nodes of separation (Ns). If the Froude number is decreased further, this flow
pattern persists, but Na moves closer to the mountain peak and the lee vortices expand
further downstream. Although an unrealistically large mountain slope of O(1), com-

pared to that in the real world is often used in laboratory experiments, the simulated
flow features are very similar to those observed in the real atmosphere.

b. Generation of lee vortices in an inviscid fluid

Using a nonlinear numerical model with free-slip lower boundary condition, a pair of
counter-rotating vortices was found to form on the lee of an isolated mountain when a
low-Froude number (e.g., F¼ 0.66, Fig. 5.21a), three-dimensional, stratified, uniform

flow passes over the mountain (Smolarkiewicz and Rotunno 1989). The simulated
results agree fairly well with laboratory tank experiments as shown in Fig. 5.20. The

free-slip lower boundary condition implies no explicit surface friction is included in the
model atmosphere. Although linear theory breaks down, at least locally, the vertical

displacement field (Fig. 5.21c) still resembles the U-shaped pattern found in the linear
theory described in Subsection 5.4.1 (Fig. 5.17). A large-amplitude mountain wave

develops over themountain peak (Fig. 5.21e). The trough of the vertically propagating
gravity waves in Fig. 5.21e shifts upstream and becomes narrower, indicating a
tendency toward collapse of the isentropic surfaces on the lee slopes of the mountain,

which is also in agreement with the linear theory. Since the air parcels are able to flow
almost directly across the mountain, this flow regime is characterized as the flow-over

regime.
When the Froude number is reduced to approximately below 0.5, such as F¼ 0.22

(Fig. 5.21b), a pair of counter-rotating vortices forms on the lee side and a saddle point
of separation and a node of attachment are produced on the upstream side of the

mountain, strikingly similar to the results obtained in laboratory experiments
(Fig. 5.20b). The region of downward displacement is enlarged (Fig. 5.21d). The

gravity wave response is drastically reduced, as much of the airflow is diverted around
the flanks of the mountain and the disturbance appears to be much more horizontal
(Fig. 5.21f). Below the mountain top, there is a recirculating flow associated with the
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lee vortices. This flow regime is characterized as the flow-around regime. Based on the

nondimensional mountain height (or inverse Froude number – Nh/U) and horizontal
mountain aspect ratio (b/a), four classes of wave and flow phenomena of importance

in three-dimensional, stratified, uniform, hydrostatic flow past an isolated mountain

(b)
 10

0

–10

(a)

y/
a

x/a

(f)
3

2

1

0

(e)

x/a
–10 0 10–10 0 10

N
z /

U

(d)
 10

0

–10

(c)

y/
a

Fig. 5.21 Three-dimensional, stratified, uniform flow with no surface friction over a bell-
shaped mountain simulated by a nonlinear numerical model. Surface streamlines, vertical
displacements at Nz/U¼ p/4, and streamlines in the vertical plane y/a¼ 0 after Ut/a¼ 9 are
shown in (a), (c), and (e), respectively, for the case with F¼ 0.66. The same flow fields but for
F¼ 0.22 are shown in the right panels ((b), (d) and (f)). The simulated flow fields have reached
quasi-steady state. The flow and orographic parameters are: U¼ 10m s"1 or 3.3m s"1,
N¼ 0.01 s"1, h¼ 1.5 km, and a¼ 10 km, which give F¼ 0.66 or 0.22, respectively. The bell-
shaped mountain is prescribed by (5.4.15.). (Adapted after Smolarkiewicz and Rotunno 1989.)
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can be identified (Fig. 5.22): (1) linear mountain waves, (2) wave breaking, (3) flow
splitting, and (4) lee vortices.

The key question concerning the numerically simulated lee vortices as shown in

Fig. 5.21 is the source of vorticity. In the absence of surface friction, boundary layer
separation will not occur and thus cannot be held responsible for the formation of the

lee vortices. Although many detailed dynamics of this problem are still topics of
current research, the basic dynamics for the generation of lee vortices can be under-

stood through the following two major theories: (1) tilting of baroclinically generated
vorticity (Smolarkiewicz and Rotunno 1989) and (2) generation of internal potential

vorticity by turbulence dissipation in numerical simulations (Smith 1989b; Schär and
Smith 1993a, b).

c. Tilting of baroclinically generated vorticity

The mechanism of baroclinically generated vorticity tilting can be understood by

taking cross differentiations of (2.2.1)–(2.2.3) to yield the inviscid vorticity equation

@w
@t
¼ "V #rw þ ðw #rÞVþr! ' rp

!2
; (5:4:28)

Linear Mountain
Waves

3

2

1

1 20.2 0.50.1
0

105

N
h/

U

Wave Breaking
Flow Splitting
Lee Vortices

Flow Splitting
Lee Vortices

b/a

Wave Breaking

Lee V
ortices

Fig. 5.22 Regime diagram for three-dimensional, stratified, uniform, hydrostatic flow over an
isolated mountain. The flow regime is controlled by the horizontal mountain aspect ratio (b/a)
and the nondimensional height or the inverse Froude number (Nh/U), where a and b are the
mountain scales in along (x) and perpendicular (y) to the basic flow directions, respectively.
Four classes of phenomena of importance in this type of flow are: (1) linear mountain waves,
(2) wave breaking, (3) flow splitting, and (4) lee vortices. The circles/ellipses represent the
mountain contours. (Adapted after Smith 1989a and Epifanio 2003.)
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where w¼r"V¼ (x, !, z) is the three-dimensional vorticity vector. The last term

on the right side of the above equation represents the generation of vorticity by
baroclinicity. Once local vorticity anomalies are generated, they are advected by
the flow field through the first term or tilted and stretched through the second

term on the right-hand side of (5.4.28). For mountains with small aspect ratio of
the obstacle height and horizontal width, the baroclinicity term reduces to (e.g.,

Epifanio 2003):

r" " rp
"2

# $k " rb; (5:4:29)

where b is the buoyancy.
Figure 5.23 shows a schematic diagram depicting the generation of leeside

vorticity by the vertical tilting of baroclinically generated horizontal vorticity. A

negative x-vorticity, x< 0, is generated on the right upslope baroclinically by the
relatively cold air along the center line and the relatively warm air to the right

(facing downstream), as indicated by (5.4.29). This negative x-vorticity is then
swept downstream and produces a positive vertical vorticity, z> 0, to the lee by

the vertical tilting of the x-vorticity, as implied by (5.4.28). Similarly, a positive
x-vorticity anomaly generated over the left upslope is tilted into a negative vertical

vorticity to the lee. As these vertical vorticity anomalies intensify, recirculating
warm-core eddies develop as a result of reconnection. This mechanism dominates
during the rapid start-up, early stage, over a nondimensional time Ut/a¼O(1), in

which the flow is essentially inviscid and adiabatic and the potential vorticity (PV)
is conserved (Schär and Durran 1997).

z

xy

Warm
(b > 0)

Warm
(b > 0)

Cold

U

ζ > 0

ξ < 0ξ > 0

ζ < 0 (b < 0)

Fig. 5.23 A schematic diagram showing the generation of leeside vorticity by the vertical
tilting of baroclinically generated horizontal vorticity (Smolarkiewicz and Rotunno 1989).
The downward (upward) arrow below the adiabatically-induced cold (warm) region
denotes downward (upward) motion. A negative x-vorticity, x< 0, is produced over the
right-hand side of the upslope baroclinically by the relatively cold air (b< 0) along the
center line and the relatively warm air to the right (facing downstream), as indicated by
(5.4.29). This negative x-vorticity is then swept downstream and produces a positive
vertical vorticity, z> 0, on the right-hand side of the lee due to the vertical tilting of the
x-vorticity, as implied by (5.4.28).
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d. Generation of potential vorticity by turbulence dissipation

At a later stage, the associated thermal anomalies generated by baroclinicity are eroded
by dissipative and diffusive processes, whereby the warm surface anomalies are con-

verted into PV. During this stage, the flow is controlled by dissipation and is accom-
panied by the PV generation over a nondimensional time of O(10)–O(100) (Schär and

Durran 1997). Note that the conservation of potential vorticity is violated in regions of
flow stagnation, such as in the region of upstream blocking where the isentropic surface

intersects the ground, and the region of wave breaking above the lee slope where
turbulence occurs (Fig. 5.24a). The dynamics of dissipative generation of PV is directly

linked to the reduction in the Bernoulli function within the wake, as demonstrated in
steady shallow-water flow past an obstacle (Schär and Smith 1993a). The shallow-water

theory can be extended to stratified fluid flow by considering the PV (q) which satisfies a
conservative equation of the form (Haynes and McIntyre 1990):

@ð!qÞ
@t
þr $ J ¼ 0; (5:4:30)

where q is defined as

PV = 0
+PV

+PV

–PV

–PVV
VV

VVVVV

V
VV

V
V

(a)

(b)

B = B∞ B = B∞

B = B∞ B = B∞

B < B∞

PV < 0

PV > 0

Bmin

Fig. 5.24 (a) A conceptual model depicting potential vorticity (PV) generation by turbulence
dissipation at stagnation points associated with wave breaking aloft and upstream blocking.
The symbol ‘‘!!!’’ denotes areas of turbulence generated by wave breaking or blocking.
(Adapted after Smith 1989a.) (b) Schematic depiction of the relationship between PV
generation and Bernoulli function on an isentropic surface in steady-state, stratified flow over
the wave breaking region. Thin lines are streamlines and dark-shaded area over the lee slope
denotes a localized region of dissipation due to wave breaking, a hydraulic jump or blocking.
The gray shaded area extending downstream denotes a reduced Bernoulli function. Open
arrows denote the PV flux J associated with the Bernoulli gradient on the isentropic surface
as described by (5.4.35). (From Schär and Durran 1997.)
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q ¼ r! " wa

"
; (5:4:31)

and the total PV flux (J) is given by

J ¼ "qV# ð _Qwa þ F & r!Þ: (5:4:32)

In the above equation, _Q ð( D!=DtÞ is the diabatic heating, wa the three-dimensional

absolute vorticity vector, and F the viscous force per unit mass. In this section, we have
assumed that the Earth rotation is negligible thus wa¼w.

It can be shown that

J ¼ r! & rBþ @V
@t

! "
# w @!

@t
; (5:4:33)

where

B ¼ V " V=2þ cpTþ gz (5:4:34)

is the Bernoulli function. In a steady-state flow, the Bernoulli function is conserved
following the flow. In addition, (5.4.33) reduces to

J ¼ r! & rB ¼ @!

@n
n & rB; (5:4:35)

where n is a unit vector oriented perpendicular to the isentropic surface and
pointing toward warm air. The generalized Bernoulli’s theorem (Schär 1993),

(5.4.35), indicates that non-zero PV fluxes must be present where there is a
variation in the Bernoulli function along any isentropic surface. Figure 5.24b
shows a schematic of PV generation by turbulence dissipation on an isentropic

surface in steady-state stratified flow past an isolated mountain. The narrow
dissipative region may be produced by turbulence associated with wave breaking,

a hydraulic jump or blocking, and generates Bernoulli function deficit in the wake
extending downstream. Based on Fig. 5.24 and (5.4.34), PV is generated in the

dissipative region and advected downstream along the edge of the wake. A pair of
counter-rotating vortices may form in the wake if the vertical vorticity associated

with the generated PV is sufficiently strong.
It appears that the above PV analysis is able to explain the close relationship between

dissipative turbulence and PV generation for a low-Froude number, stratified flow over

an isolated mountain. The causality, however, is still unclear due to the steady-state
assumption. In addition, an assumption of balance is required in order to infer the

structure of the flow from the distribution of PV (Hoskins et al. 1985). In the near field
of the wake, these balance constraints are constantly strongly violated due to the presence

of the strong surface temperature gradient over the lee slope, which results from the
upstream blocking (Epifanio andRotunno 2005). Therefore, although the PV generation
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may have important implications on the downstream evolution of orographic wakes and
lee vortices, a fundamental understanding of the wake formation is still needed.

When the wake flow in which the lee vortices are embedded becomes unstable, the
vortices tend to shed downstream and form a von Kármán vortex street. A von

Kármán vortex street is a repeating pattern of alternate and swirling vortices along
the center line of the wake flow, and is named after the fluid dynamicist, Theodore von

Kármán. This process is also known as vortex shedding. Any noise, impulsive
disturbance, or asymmetric forcing in the wake flow can trigger an instability, which

gives way to a vortex street or vortex shedding. Figure 5.25 shows an example of a von
Kármán vortex street formed in the atmosphere to the lee of a mountainous island.

The von Kármán vortex street or vortex shedding has also been simulated by many
nonlinear numerical models, such as that shown in Fig. 5.28a.

5.5 Flows over larger mesoscale mountains

5.5.1 Rotational effects

In the previous sections, effects of Earth’s rotation are neglected. This is approximately

valid for flow with Rossby number (Ro¼U/fL, where L is the horizontal scale of the
mountain) much larger than 1. However, for flow over mountains with Ro¼O(1) or

smaller, the effects of Earth’s rotation cannot be ignored. In this situation, the advection
time for an air parcel to pass over themountain is too large to be ignored compared to the
period of inertial oscillation due to Earth’s rotation (2p/f ). Flow past many mesoscale

mountain ranges, such as the EuropeanAlps,USRockies, CanadianRockies, Andes, the

Fig. 5.25 A von Kármán vortex street that formed to the lee of the Guadalupe Island, off the
coast of Mexico’s Baja Peninsula, revealed by MISR images from June 11, 2000 detected by
NASA satellite Terra. (From Visible Earth, NASA.)

152 Orographically forced flows

Cambridge Books Online © Cambridge University Press, 2010Downloaded from Cambridge Books Online by IP 129.15.109.254 on Mon Jan 19 18:15:57 GMT 2015.
http://dx.doi.org/10.1017/CBO9780511619649.006

Cambridge Books Online © Cambridge University Press, 2015


