
by imagining an elevated wave that is composed of several rectangular blocks with

shorter blocks of fluid on top of longer blocks (Fig. 3.6a). Since the shallow water
wave speed is proportional to themean layer depthH, the speed of fluid particles in the

upper layer will be greater than that in the lower layer. Thus, the wave front will have a
tendency to steepen (Fig. 3.6b) and possibly overturn (Fig. 3.6c). Once overturning

occurs, the fluid becomes statically unstable and turbulence will be induced.
In a rotating shallow water system, the Coriolis force becomes more and more

important when the Rossby number decreases. In this situation, the fluidmay undergo
geostrophic adjustment to an initial disturbance, as briefly discussed in Chapter 1, to a
scale determined by the Rossby radius of deformation, lR ¼ c=f ¼

ffiffiffiffiffiffiffi
gH
p

=f.

3.5 Pure gravity waves

Consider small-amplitude (linear) perturbations in a two-dimensional (@/@y¼ 0),

inviscid, nonrotating, adiabatic, Boussinesq, uniform basic state flow with uniform
stratification, (2.2.14)–(2.2.18) reduce to

@u0

@t
þU

@u0

@x
þ 1

!o

@p0

@x
¼ 0; (3:5:1)

@w0

@t
þU

@w0

@x
# g

"0

"o
þ 1

!o

@p0

@z
¼ 0; (3:5:2)

@u0

@x
þ @w

0

@z
¼ 0; (3:5:3)

(a)

(b)

(c)

c3
c2

c1

c3
c2
c1

c1

c2

c3

Fig. 3.6 The evolution of an initial symmetric wave, which is imagined to be composed of three
rectangular blocks with shorter blocks on top of longer blocks. The wave speeds of these fluid
blocks are approximately equal to cn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðHþ nhÞ

p
, based on shallow-water theory, where

n¼ 1, 2, and 3, H is the shallow-water layer depth, and h is the height of an individual fluid
block. The wave steepening in (b) and wave overturning in (c) are interpreted by the different
wave speeds of different fluid blocks because c3> c2> c1.
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@!0

@t
þU

@!0

@x
þN2!o

g
w0 ¼ 0; (3:5:4)

where !o is a constant reference potential temperature, and N2 ð$ ðg=!oÞ@ !!=@zÞ is the
square of the Boussinesq Brunt–Vaisala (buoyancy) frequency. Figure 3.7 illustrates
the vertical oscillation of an air parcel in a stratified atmosphere with a Brunt–Vaisala

frequency N. The total oscillation period is 2p/N ("b in the figure). The air parcel
expands and cools while it ascends, and reaches its maximum expansion and coolest

state at t¼ "b/4. At this level, the air parcel density perturbation is the largest. It then
descends due to negative buoyancy and overshoots passing its original level at t¼ "b/2.
The air parcel compresses and warms adiabatically while it descends, and reaches its
maximum compression and warmest state at t¼ 3"b/4. At this level, the air parcel
density perturbation is the lowest. It then ascends due to positive buoyancy, and returns

to its original level at t¼ "b. For a two-dimensional, nonrotating fluid flow, there is no
need to retain the meridional (y-) momentum equation in our system of equations,

because v0 will keep its initial value for all time, as required by the reduced form of the
y-momentum equation, namely, @v0/@tþU@v0/@x¼ 0. Note that the y-momentum

equation needs to be kept if the fluid is two-dimensional and rotating since the initial v 0

will varywith time, although independent of y, due to the presence of theCoriolis force.

Equations (3.5.1)–(3.5.4) may be combined into a single equation for the vertical
velocity w0, which is a simplified form of the Taylor–Goldstein equation [(3.7.19)] in
the absence of vertical wind shear,

@

@t
þU

@

@x

! "2 @2w0

@x2
þ @

2w0

@z2

! "
þN2 @

2w0

@x2
¼ 0: (3:5:5)

Assuming a traveling sinusoidal plane wave solution of the form,

max expansion
(coolest)
(heaviest)

max compression
(warmest)
(lightest)

3τb /4t = 0

z

τb /4 τbτb / 2

Fig. 3.7 Vertical oscillation of an air parcel in a stably stratified atmosphere when the
Brunt–Vaisala frequency is N. The oscillation period of the air parcel is "b¼ 2p/N and the
volume of the air parcel is proportional to the area of the circle. (Adapted after Hooke 1986.)
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w 0 ¼ ŵðzÞ eiðkx$otÞ; (3:5:6)

and substituting it into (3.5.5) yields the following linear partial differential equation

with constant coefficients, which governs the vertical structure of w0,

@2ŵ

@z2
þ N2

O2
$ 1

! "
k2ŵ ¼ 0: (3:5:7)

In the above equation, O & o$ kU is the intrinsic (Doppler-shifted) frequency of the

wave relative to the uniform basic state flow. Equation (3.5.7) has the following two
solutions:

ŵ ¼ A eik
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2=O2$1
p

z þ B e$ik
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2=O2$1
p

z; forN2=O241; (3:5:8)

and

ŵ ¼ C ek
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$N2=O2
p

z þD e$k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$N2=O2
p

z; forN2=O251: (3:5:9)

Equation (3.5.8) represents a vertically propagating wave because it is sinusoidal with
height. As will be discussed in Section 4.4, term A represents a wave with upward
energy propagation, while term B represents a wave with downward energy propaga-

tion. Thus, for waves generated by orography, term B is unphysical and has to be
removed because the wave energy source is located at the surface, as required by the

radiation boundary condition. On the other hand, term C of (3.5.9) represents wave
amplitude increasing exponentially with height, while termD represents a wave whose

amplitude decreases exponentially from the level of wave generation. Thus, for waves
or disturbances generated by orography, term C is unphysical. This is also called the

boundedness condition. Under this situation, term D represents an evanescent wave or
disturbance, whose wave amplitude decreases exponentially with height. In other

words, there exist two distinct flow regimes for pure gravity waves (i.e. vertically
propagating waves and evanescent waves) in the atmosphere, which are determined
respectively by the following criteria:

N2=O2 > 1 and N2=O251: (3:5:10)

The above two pure gravity wave flow regimes can be understood by considering
steady-state responses of stably stratified airflow over a sinusoidal topography. In this

particular case, O2¼ k2U2. When N2/O2> 1, we have 2p/N<L/U, where L¼ 2p/k
is the dominant horizontal wavelength of the sinusoidal topography. Note that 2p/N is

the buoyancy oscillation period and that L/U is the advection time an air parcel takes to
cross over onewavelength of themountain. Thus, fluid particles take less time to oscillate

in the vertical, compared to the horizontal advection time required to pass over the
mountain. This allows the wave energy to propagate vertically (Fig. 3.8a). On the other

hand, when N2/O2< 1 or 2p/N>L/U, fluid particles do not have enough time to
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oscillate vertically because the time required for the particles to be advected over the

mountain is shorter. Therefore, the wave energy cannot freely propagate vertically, and
it is preferentially advected downstream, remaining near the Earth’s surface (Fig. 3.8b).
This type of wave or disturbance is also referred to as an evanescent wave or a surface

trapped wave.
If the stratification of the fluid is uniform and the disturbance is sinusoidal in the

vertical, then ŵmay be written as ŵ¼woe
imz, where wo and m are the wave amplitude

and vertical wave number, respectively. Substituting ŵ into (3.5.7) yields the disper-

sion relation for pure gravity waves,

O ¼ "Nkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2
p : (3:5:11)

For a quiescent fluid (U¼ 0), the above equation reduces to

o ¼ "Nkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2
p ; (3:5:12)

or

o
N
¼ " kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2
p ¼ " cos!; (3:5:13)

where ! is the angle (|!|$ p/2) between the wave number vector k¼ (k, m) and the

x-axis. While the wave number vector is oriented in the same direction as the phase
speed vector (cp in Fig. 3.9), the wave front is oriented perpendicular. Fluid parcels

oscillate in a direction perpendicular to the total wave number vector, as indicated by
the incompressible continuity equation, k %V 0¼ 0. Therefore, the wave fronts or rays

associated with particle oscillations tilt at an angle ! with respect to the vertical. This
characteristic behavior of nonrotating internal gravity waves has been verified in

water tank experiments (Mowbray and Rarity 1967). For a given stratification,

(a)

(b)

Fig. 3.8 (a) Vertically propagating waves and (b) evanescent waves for a linear, two-dimensional,
inviscid flow over sinusoidal topography.
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waves with constant o<N propagate at a fixed angle to the horizontal axis, which is
independent of the wavelength.

From (3.5.12), we may obtain the horizontal and vertical phase velocities,

cpx ¼
o
k
¼ "Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2
p ; cpz ¼

o
m
¼ $ kN

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2
p (3:5:14)

These expressions indicate that pure gravity waves are dispersive in both the x and z

directions because both cpx and cpz depend on wave number. The group velocities can
be derived from (3.5.12),

cgx ¼
@o
@k
¼ "m2N

k2 þm2ð Þ3=2
; cgz ¼

@o
@m
¼ $kmN

k2 þm2ð Þ3=2
: (3:5:15)

Note that cpx and cgx are directed in the same direction, while cpz and cgz are directed in

opposite directions. This is also shown in Fig. 3.9. Due to these peculiar properties of
internal gravity waves, the implementations for lateral and upper boundary conditions

associated with mesoscale numerical models that resolve these waves must be carefully
configured. Briefly speaking, a horizontal advection equation, @j/@tþ cpx@j/@x¼ 0,
where j represents any prognostic dependent variable, can be applied at the lateral

boundaries and can be implemented to help advect the wave energy out of the lateral

en
er
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op
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ai
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ot
io

n

phase
propagation

x

k
α

t3

cp

cg

t1

x

z

t2

Fig. 3.9 Basic properties of a vertically propagating gravity wave with k> 0, m< 0, and o> 0.
The energy of the wave group propagates with the group velocity (cg; thick blunt arrow), while
the phase of the wave propagates with the phase speed (cp). Relations betweenw0, u0, p0, and !0 as
expressed by (3.5.16) and (3.5.17) are also sketched. Symbols H and L denote the perturbation
high and low pressures, respectively, while W and C denote the warmest and coldest regions,
respectively, for the wave at t1. Symbol " defined in (3.5.13) represents the angle of the wave
number vector k from the horizontal axis or the wave front (line of constant phase) from the
vertical axis. (Adapted after Hooke 1986.)
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boundary of the computational domain. On the other hand, a vertical advection

equation, @j/@tþ cpz@j/@z¼ 0 (with cpz> 0), cannot advect the wave energy out of
the upper boundary since the wave energy will propagate downward back into the

computational domain as is cgz negative. The numerical radiation boundary conditions
will be discussed in more detail in Section 13.2, while the details of the Sommerfeld
(1949) radiation boundary condition will be discussed in Section 4.4.

Due to the fact that only the real part of the solution is physical, (3.5.6) and
ŵ(z)¼wo exp(imz) can be combined in the form,

w0 ¼ Re woe
iðkxþmz$otÞ

! "
¼ wr cosðkxþmz$ otÞ $ wi sinðkxþmz$ otÞ; (3:5:16)

where wr andwi are the real and imaginary parts ofwo, respectively. Substitutingw
0 into

(3.5.1)–(3.5.4) with U¼ 0 leads to the polarization relations

u0 ¼ $ðm=kÞ wr cosðkxþmz$ otÞ $ wi sinðkxþmz$ otÞ½ '; (3:5:17a)

p0 ¼ $ !oom=k2
# $

wr cosðkxþmz$ otÞ $ wi sinðkxþmz$ otÞ½ '; (3:5:17b)

"0 ¼ "oN
2=go

# $
wr sinðkxþmz$ otÞ þ wi cosðkxþmz$ otÞ½ ': (3:5:17c)

The above relationships are also shown in Fig. 3.9 for the case where k> 0, m< 0, and
o> 0. The wave frequency is assumed to be positive, in order to avoid redundant

solutions. For k> 0, m< 0, and o> 0, (3.5.17a) indicates that u0 is in phase with w0,
which is shown in Fig. 3.9 by fluid oscillating toward the right in regions of upward

motion. Equation (3.5.17b) indicates that p0 is also in phase with w0. Thus, high (low)
pressure is produced in regions of upward (downward) motion. Equation (3.5.17c)

indicates that "0 is out of phase withw0 by p/2 (908). Fluid particles lose (gain) buoyancy
in regions of upward (downward) motion, according to (3.5.4) with U¼ 0. Therefore,

the least buoyant (coldest) fluid parcels (denoted byC in t1 of Fig. 3.9) will move toward
regions of maximum upward motion. That is, internal gravity waves will move in the
direction of phase propagation (toward the lower right corner of the figure), as denoted

by cp in the figure.
Returning to the vertical structure solutions, (3.5.8) and (3.5.9), there are two

extreme cases that merit further discussion. WhenN244O2, the buoyancy oscillation
period (2p/N) is much shorter than the oscillation period of the disturbance (2p/o)
or the advection time (L/U). Therefore, the wave energy will propagate purely in
the vertical direction. In this situation, constant phase lines and group velocities are

oriented vertically, while the total wave number vector is oriented horizontally. In this
special flow regime, often referred to as the hydrostatic gravity wave regime, the

vertical momentum equation (3.5.2) reduces to its hydrostatic form,

1

!o

@p0

@z
¼ g

"0

"o
: (3:5:18)

42 Basic wave dynamics

Cambridge Books Online © Cambridge University Press, 2010Downloaded from Cambridge Books Online by IP 129.15.109.254 on Mon Jan 19 18:15:17 GMT 2015.
http://dx.doi.org/10.1017/CBO9780511619649.004

Cambridge Books Online © Cambridge University Press, 2015



This implies that the vertical pressure gradient force is in balance with the buoyancy

force in the z direction. In other words, vertical acceleration Dw0/Dt plays an insig-
nificant role in wave propagation. It can be shown from (3.5.8) that the waves repeat

themselves in the vertical direction without losing their amplitude and have a wave-
length of 2pO/kN for a steady-state flow. For hydrostatic gravity waves, the wave
equation (3.5.5) for the vertical velocity w0 reduces to

@

@t
þU

@

@x

! "2@2w0

@z2
þN2 @

2w0

@x2
¼ 0: (3:5:19)

In the other limit, N2<5O2, the buoyancy oscillation period is much greater than
that of the disturbance (2p/o) or advection time of the air parcel (L/U). Therefore,

the buoyancy force plays an insignificant role in this flow regime. In this situation,
the wave energy is not able to propagate vertically, and the wave disturbance will
remain locally in the vicinity of the forcing. The vertical momentum equation, (3.5.2),

reduces to

@w0

@t
þU

@w0

@x
¼ # 1

!o

@p0

@z
: (3:5:20)

Thus, only the vertical pressure gradient force contributes to the vertical acceleration.

It can also be shown from (3.5.9) that the amplitude of the disturbance decreases
exponentially with height. As discussed earlier, this special case is called the evanescent

flow regime. The wave equation for w0 reduces to

@

@t
þU

@

@x

! "2 @2w0

@x2
þ @

2w0

@z2

! "
¼ 0: (3:5:21)

If the flow starts with no relative vorticity in the y-direction (i.e. if @u0/@z#@w0/@x¼ 0
at t¼ 0), then the above equation reduces to a two-dimensional form of the Laplace’s

equation

@2w0

@x2
þ @

2w0

@z2
¼ 0: (3:5:22)

Because this type of flow is everywhere vorticity-free, it is often referred to as potential
(irrotational) flow.

3.6 Inertia-gravity waves

When the Rossby number (Ro¼U/fL) becomes smaller, rotational effects need to be
considered. In this situation, buoyancy and Coriolis forces can act together as restoring

forces and inertia-gravity waves can be generated. The governing equations are similar
to (3.5.1)–(3.5.4), but with three-dimensional and rotational effects included,
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