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CHAPTER 20

Mountain Waves

Dale R. Durran

20.1. Introduction

The basic flow pattern across a long ridge of mountains is determined
by the mountain width. If the ridge is wide enough that the time required
for air to cross it is greater than order 1/f (where f is the Coriolis parame-
ter), rotational effects generate a disturbance with large displacements in the
horizontal z-y plane. As the width decreases to less than 100 km, the pertur-
bations in the horizontal plane disappear and waves in the vertical z-z plane
develop. When the wind blows over such a ridge, air parcels are displaced
vertically and, if the atmosphere is stably stratified, they descend and may
oscillate about their equilibrium levels. The gravity waves that result, called
mountain waves or lee waves, have been observed in mountainous regions all
over the world.

The presence of mountain waves is frequently revealed by distinctive oro-
graphic clouds that form in the wave crests. Various types of mountain waves
produce the different types of wave clouds. An identification of a particular
type of wave cloud can be used to make some qualitative deductions about
the vertical variation in wind speed and stability over the mountains.

Large-amplitude mountain waves can produce several weather phenom-
ena that significantly affect human activity and therefore require the at-
tention of the weather forecaster. The strong downslope winds observed
along the lee slopes of mountain barriers are usually associated with large-
amplitude waves. Dangerous regions of clear-air turbulence are also produced
by these waves.

20.2. Theory of Linear Waves Forced by Sinusoidal Mountain
Ridges

The most fundamental properties of mountain waves can be profitably ex-
amined by considering the steady-state, two-dimensional airflow over “small-
amplitude” mountains (so that linear theory can be used). The two-
dimensional assumption is appropriate if the mountains are assumed to ex-
tend indefinitely in the direction parallel to the ridge and be sufficiently nar-
row that the Rossby number governing the flow is large (so Coriolis forces
may be neglected). Consider the equations for an inviscid Boussinesq fluid,
the simplest case that contains the essential physics governing the flow, and
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(consistent with our small-amplitude assumption) linearize them about a
horizontally uniform basic state with a mean wind U, a reference potential
temperature fp, and a mean potential temperature gradient df/dz. The
result may be written

Ug—Zer%ng%g:O, (20.1)
g2, O, 202
Ug% +Nw=0, (20.3)

%Z—Jrz—t =0, | | (20.4)

where b = g8/0o, P = cpbom, and N? = (g/0o)(d6/dz). Here (u,w) repre-
sent the perturbation velocity components in the Cartesian (z, z) coordinate
system, 8 is the perturbation potential temperature, and 7 the perturbation
Exner function, (p/po)®/¢». The Brunt-Viisila frequency is given by N. The
remaining constants have their conventional meanings.

Equations (20.1)—(20.4) may be combined to form a single equation for
w:

v  w

2 —
5‘2—“}‘"8—35--{-5 w=0, (20.5)
where
N? 1d%U
2 _
C=m v (406}

is the Scorer parameter.

As a further simplification, let the terrain profile be defined as an infinite
set of periodic ridges,

h(z) = hocoskz , (20.7)

and let ¥V and U be constant with height.

Since the Earth’s surface is fixed, the normal component of the velocity
must vanish at the lower boundary. Thus,

R u)g’}: , (20.8)

which can be approximated, to the same order of accuracy as the linearized
equations, as

w(z,0) = U% — —Uhgksiake. (20.9)
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Solutions to (20.5) can be obtained in the form

w(z, z) = W1(2) cos kz + W2 (z) sinkz . (20.10)

Substituting (20.10) into (20.5) yields an equation that determines the ver-
tical structure of the perturbation velocity field. Both @W; and @, satisfy

+ (2 —kH)w; =0 i=1,2. (20.11)

Since N and U are assumed to be constant with height, £2 — k2 = m? is a
constant and the solution of (20.11) may be written

A;e#* + Bie B2 k>1¢
Alcosmz+ Blsinmz k<¢,

wi(2) = {

where u? = —m2. Note that the vertical structure of the wave depends on the
relative magnitudes of the Scorer parameter and the horizontal wavenumber.
When k > £ the wave amplitude decreases (or increases) exponentially with
height; when & < £ the vertical velocity above a fixed point on the ground
oscillates between regions of upward and downward motion as z increases.

The coefficients A;, B;, A}, and B! in (20.12) are determined by boundary
conditions imposed at z = 0 and in the limit as z approaches infinity. When
k > £, the first term in the general solution corresponds to a wave whose
amplitude grows exponentially without bound as z increases. This behavior
is not physically reasonable since the mountain is the energy source for the
disturbance. Thus, the boundary condition at infinity requires that A; =
0. Then By = 0, B = —Uhgk, in order to satisfy the “tangential flow”
condition (20.9).

In the case k < £, trigonometric identities can be used to write the general
solution as

(20.12)

w(z, 2) =Cysin(kz + mz) + Cysin(kz — mz)
+ Czcos(kz + mz) + Cycos(kx — mz) , (20.13)

where both m > 0, £ > 0. The lower boundary condition requires C; +
Cy = —Uhgk, and C3 + C4 = 0. These coefficients are uniquely specified
by applying a boundary condition in the limit as 2z approaches infinity. The
nature of this upper boundary condition is not as obvious as it was in the case
k > £, a circumstance that has led to some confusion in the past. The terms
with coefficients C; and C3 correspond to waves in which lines of constant
phase (kz +mz = constant) tilt upstream. It can be shown that these waves
transport energy upward and momentum downward. The opposite is true
for the remaining two terms. Since the mountain acts as the energy source
for the wave disturbance, the correct choice of coefficients is C; = —Uhk,
Cqy = C3 = C4 = 0, which requires that all energy transport by the waves be
directed upward as z approaches infinity.
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The same choice of the upstream-tilting wave can be obtained by a vari-
ety of other arguments (see Smith, 1979). It should be noted, in particular,
that the upstream-tilting wave is invariably obtained as the steady-state nu-
merical solution to initial-value problems involving vertically propagating
mountain waves. Unfortunately, some authors continue to suggest that the
choice of the upper boundary condition is somehow still an open question.
Atkinson (1981) follows Scorer’s incorrect development and does not ade-
quately alert the reader that the result for propagating waves, Atkinson’s
Eq. (34), is wrong.

Perhaps it is easier to understand why the upstream-tilting wave is the
correct solution by considering the perturbation pressure field. In this sim-
ple situation, the mean wind is constant with height, and the horizontal
momentum and continuity equations can be combined to yield

opP d

e | i

or 0z
In the case k < £, the solutions for the perturbation pressure fields in the
upstream- and downstream-tilting waves are '

(20.14)

—U?homsin(kz + mz) upstream tiltin
_ { 0 . ( ) up g. (20.15)
U2homsin(kz —mz)  downstream tilting .

Note that at z = 0, the extrema in the perturbation pressure field are shifted
90°relative to the location of the troughs and ridges in topography. The
wave that tilts upstream with height [— sin(kz+ mz)] produces high pressure
upwind of the ridge crest and low pressure downwind. The wave that tilts
downstream produces the opposite pressure pattern. The asymmetry in the
pressure distribution across the ridge gives rise to a net pressure force on
the topography. The upstream-tilting wave exerts a force on the mountain
in the direction of the mean flow, and therefore an equal and opposite force
is exerted by the terrain, which acts to decelerate the mean flow. In the
case of downstream-tilting waves, the resulting pressure forces are directed
upstream and simultaneously accelerate the mean flow in the direction it is
already going. This last situation is clearly contrary to physical intuition,
suggesting that the correct solution is the upstream-tilting wave.

In summary, the perturbation vertical velocity field in the waves forced
by the sinusoidal terrain profile (20.7) can be written

—Uhoke~#*sinkz k> ¢
w(z, ):{ e = B e (20.16)

—~Uhoksin(kz + mz) k<£.

The two types of wave structures are illustrated in Fig. 20.1. The waves
in the case k > £ (Fig. 20.1a) decay exponentially with height (evanescent

waves), whereas in the k < £ case (Fig. 20.1b), the waves propagate vertically,
without loss of amplitude.
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Figure 20.1. Streamlines in the steady airflow over an infinite series of sinusoidal ridges
when (a) the wavenumber of the topography exceeds the Scorer parameter (narrow ridges)
or (b) the wavenumber of the topography is less than the Scorer parameter (wide ridges).

The speed of the air flowing through these waves can also be determined
from Fig. 20.1. It follows from the change in spacing between streamlines,
which in this case are actually contours of a stream function, that in the case
of the vertically propagating wave there will be weak winds over the wind-
ward slope and strong winds in the lee. This amplification of the lee-side
wind is believed to be associated with the development of strong downslope
winds like the Colorado chinook. In the case of the evanescent wave, the dis-
tribution of wind speed is symmetric about the mountain peak, the strongest
winds being directly above the crest.

The physical reason for the difference between the two types of waves may
be described qualitatively as follows. The requirement k < £ is equivalent, in
the absence of curvature in the mean wind profile, to Uk < N, which states
that the intrinsic frequency of the forcing by the terrain must be less than
the Brunt-Vaisila frequency. The Brunt-Vaisidld frequency is the highest
frequency at which buoyancy forces can support periodic motion in a stably
stratified fluid; parcels of air oscillating at the Brunt-Vaisild frequency move
vertically, straight up and down. Lower frequency oscillations are obtained
when the parcel paths are tilted at some angle off the vertical. It can be
shown that if ¢ is the angle between the slanted parcel trajectories and the
vertical, the frequency of the oscillation will be N cos ¢ (Gill, 1982, p. 132).
The troughs and crests in vertically propagating gravity waves tilt in order to
match the natural frequency of the atmospheric oscillations to the intrinsic
frequency forced by the airflow over the terrain. As a result, the slope of the
wave crests (which is identical to the slope of a parcel trajectory) satisfies

Uk=DNcos¢ . (20.17)

However, if the intrinsic frequency of the forcing exceeds N, no real angle ¢
will satisfy (20.17), and no buoyancy-driven oscillation can be established.
In this case, buoyancy forces act to dampen the oscillation, like a spring
forced at a nonresonant frequency. The wave are damped more rapidly as
the difference between Uk and N increases.
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20.3. Theory of Linear Waves in More Realistic Situations

The mountain wave solutions (20.16) apply only to an air mass with
constant stability, flowing at a uniform mean speed, across an endless series of
sinusoidal ridges. If more realistic terrain profiles and atmospheric structures
are considered, other solutions to (20.5) can be obtained which bear a strong
resemblance to observed mountain waves. The following is a description of
how the wave response is influenced by isolated ridges and vertical variation
in the Scorer parameter, the mathematical derivations are often omitted;
they may be found in Smith (1979) and Queney et al. (1960).

20.8.1. Influence of Shape of Terrain

Suppose the mountain contour consists of a single ridge so that the terrain
elevation eventually drops to some reference level at all distances sufficiently
far upstream and downstream. Just as Fourier series can be used to represent
a wide variety of periodic functions as an infinite sum of sines and cosines, the
isolated mountain can, under rather general conditions, be constructed from
periodic functions by the use of Fourier transforms. The Fourier transform
(F) of a real function ¢ and its inverse (1) may be defined:

3k = Flo(@)] - - [~ pla)eedz;

#(z) = FH(3(k)] = Re [~ p(k)e*=dk

The Fourier transform is particularly useful in this application because it has
the property that F(8"¢/dz") = (ik)" .

If the fundamental equation for linear gravity waves (20.5) is Fourier
transformed in the horizontal, the result is (20.11), where @(k,2) =
Flw(z,2)]. Thus, the behavior of each component @(ko,2) of the trans-
formed vertical velocity field is identical to that obtained by forcing the
atmosphere with sinusoidal topography having the wavenumber kg. Thus,
the results obtained in Sec. 20.2 are also applicable to the case of isolated
topography. The only complication arises from the requirement that after
@(k, z) is determined, the actual vertical velocity field must be recovered by
application of the inverse transform.

Consider again the case in which N and U (and hence £) are constant
with height. The function W(k, 2) is the complex analog of (20.12), which,
after the free slip and radiation boundary conditions are evaluated, is

(20.18)

W(k,2) = tkUh(k,2) exp[i(€2 —k*)*?2] k>o0. (20.19)

Here A is the Fourier transform of the terrain profile; it determines the rela-
tive weight accorded to each wavenumberin the final solution w(z, z). If the
mountain is very narrow, the dominant weighting will be at wavenumbers
greater than £ so the solution will consist primarily of evanescent waves. On
the other hand, if the mountain is sufficiently wide, the dominant weighting
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is at wavenumbersless than £ and the solution consists primarily of vertically
propagating waves.
Figure 20.2 above shows how the waves generated by a bell-shaped ridge,

hoa2

h(z) el
vary with the difference between a~! and £ (N and U are again constant
with height). This mountain has a maximum height of hg at = = 0, and
falls to %ho at £ = +a; thus a~! represents a scale characteristic of the
wavenumbers forced by the mountain. For very narrow mountains, where
a~! >> ¢ (Fig. 20.2a), the wave pattern is symmetric with respect to the
ridge crest, and the perturbations decay with height, just like the evanescent
waves in Sec. 20.2. For a wide mountain, where a=! << £ (Fig. 20.2¢),
the waves propagate vertically, and lines of constant phase tilt upstream. .
Assuming the condition that a=! << £is equivalent to taking the hydrostatic
limit, in which case k << £ and (20.19) reduces to

(20.20)

w(k,z) =ik Uﬁ(k,z) e't* k>0, (20.21)

eliminating the dependence of vertical wavelength on horizontal wavenumber.
As a result, the mountain profile is reproduced at every level that is an
integral multiple of 2w /£. (This result is independent of the shape of the

‘mountain.)

In the third case, a=! = £ (Fig. 20.2b), the solution is dominated by
vertically propagating nonhydrostatic waves (i.e., k < £ without k << ¢)
and the situation is more complicated. The phase lines still tilt upstream,
and energy is transported upward. However, unlike hydrostatic waves, in
which the transport occurs directly over the mountain (because the horizon-
tal group velocity of a stationary hydrostatic wave is zero), nonhydrostatic
waves transport energy both upward and downstream (because the horizontal

{a) [CH] {c)

ml

HEIGHT {k

X (km) X {km)

X {km)

Figure 20.2. Streamlines in the steady airflow over an isolated bell-shaped ridge. (a} a=! >>
¢, narrow ridge; (b) a™! = £, width of the ridge comparable with the Scorer parameter;
(c) @71 << ¢, wide ridge, but not so wide that rotational effects become significant.
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Figure 20.3. Streamlines in the steady Figure 20.4. A vertical distribution

airflow over an isolated bell-shaped ridge of temperature and wind speed (solid
when the vertical variation of the Scorer lines), which implies a discontinuous two-
parameter has the two-layer structure layer structure for the Scorer parameter
shown in Fig. 20.4. (dashed line on right panel).

group velocity of a stationary nonhydrostatic wave is directed downstream).
As a result, the waves in Fig. 20.2b appear in a wedge-shaped region down-
stream of the ridge.

It is important to appreciate that if a mountain is sufficiently wide to
produce essentially hydrostatic waves (but not so wide that Coriolis forces
become significant), there will be only one wave crest in the air flowing
over the mountain. Additional crests do not appear downstream from the
mountain unless nonhydrostatic effects are significant. Even in the case
.shown in Fig. 20.2b, the wave amplitude decays rapidly downstream from
the mountain.

20.8.2. Influence of Atmospheric Structure

Trapped lee waves are a different type of mountain wave. The airflow
in a system of trapped waves (also known as resonant lee waves) is shown
in Fig. 20.3. Note that most of the wave activity is confined to the lower
troposphere on the lee side of the mountain. As demonstrated by Scorer
(1949), this type of long wave train occurs only when ¢2 decreases with
height. Reference to (20.6) reveals that a decrease in £2 will result from an
increase in wind speed, a decrease in stability, or an increase in the curvature
of the wind speed profile. Scorer examined the behavior of linear waves in
a two-layer atmosphere in which £2 was constant in each layer. An example
of this kind of two-layer structure is shown in Fig. 20.4, which describes
the upstream conditions for the solution shown in Fig. 20.3. Note that a
discontinuity in £2 can occur without discontinuities in § and U. Scorer
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showed that the wavenumberof the trapped waves must satisfy the following
resonance condition:

(2 — k%)% cot[(£2 — k22 H] = — (k% - £)'/? (20.22)

where £y and £; are the Scorer parameters in the upper and lower layers,
and H is the depth of the lower layer. A necessary condition for the existence
of a solution to (20.22) is

73.2

4H2’
which states that the difference in wave propagation characteristics in the two
layers must exceed a certain threshold before the waves can be “trapped.” If
(20.23) is satisfied by a sufficient margin, there may be multiple solutions to
(20.22), in which case the mode with the longest horizontal wavelength will
usually dominate.

The wavenumber of the resonant wave solution to (20.22) must satisfy
the inequality

02— > (20.23)

b ks by, (20.24)

which implies that the wave propagates vertically in the lower layer, and
decays exponentially in the upper layer. One might expect the waves to tilt
upstream with height throughout the region in which they are vertically prop-
agating; however, as shown in Fig. 20.3, trapped waves have no tilt. This is
because, when the upward-propagating waves (which are originally triggered
by the mountain) reach the upper layer, they cannot continue to propagate
upward; they are reflected as downward-propagating waves. The downward-
propagating waves subsequently are reflected as upward-propagating waves
when they strike the ground. As this process continues, an infinite num-
ber of reflections take place. There is no loss of amplitude when the waves
are reflected because there are no energy exchanges with the upper layer or
the flat ground downstream of the mountain. As a result, the disturbances
that appear downstream are the superposition of equal-amplitude upward-
and downward-propagating waves, and thus have no tilt. To illustrate this
mathematically, the trapped waves in Fig. 20.3 have the functional form

w(z, 2) = Bsinazcoskz , (20.25)

in the lower layer. Here 8 and « are constants (see Queney et al. [1960]
for the details). By using trigonometric identities, (20.25) can be written as

the sum of two equal amplitude waves that tilt upstream and downstream,
respectively:

w(z,2) = gsin(az + kz) + gsin(az — kz) . (20.26)

Referring again to Fig. 20.3, note that, in addition to the trapped waves,
a weak vertically propagating wave also appears over the mountain. This
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develops because the mountain produces some forcing at wavenumbers less
than £y, thereby generating waves that can propagate through the upper
layer. The mountain shown in Fig. 20.3 is specified by (20.20) with ¢ =
2.5 km, ho = 300 m. If the mountain width is increased, the amplitude of
the vertically propagating waves would increase and the amplitude of the
trapped waves would decrease.

This example illustrates the important conclusion that the behavior of
linear mountain waves depends entirely on the shape of the terrain profile and
the mean atmospheric structure. The range of possible wave motions (i.e.,
which wavelengths will be vertically propagating, which will be evanescent,
and which, if any, will be resonant and trapped) is determined by the at-
mospheric structure, particularly the mean horizontal wind speed and static
stability. The shape of the terrain determines the strength of the forcing
applied to each wavelength. In most atmospheric situations associated with
mountain waves, vertically averaged values of N and U typically lie in the
ranges 0.008 to 0.02 57! and 10 to 40 m s}, implying that most wavelengths
less than 3 km (k > Nmax/Umin) Will be evanescent, and most wavelengths
greater than 30 km (kK < Npin/Umax) will propagate vertically. Trapped
waves generally occur at intermediate wavelengths between 5 and 25 km.

20.4. Interpretation of Clouds in Satellite Photos
20.4.1. Types of Clouds

Wave-induced orographic clouds are often evident in satellite pho-
tographs. However, when interpreting these photographs, operational meteo-
rologists tend to assume that all cloud-producing mountain waves propagate
horizontally (Fig. 20.3). In fact, vertically propagating waves (Fig. 20.2c)
commonly generate clouds as well, and the two types of clouds can usually
be distinguished. Once the type of wave has been indentified, certain general

conclusions can be drawn about the atmospheric conditions in the vicinity
of the waves.

Clouds From Trapped Waves

The clouds in Fig. 20.5 show an extensive region of lee wave activity
covering most of Nevada and portions of Oregon, Idaho, and Utah on 2 May
1984 at 1715 GMT. These are trapped waves of the type shown in Fig. 20.3,
and can be recognized as such by these characteristics:

e There are multiple wave crests downstream from the initial disturbance.

e The wavelength, which varies between 10 km in northwestern Nevada

and 23 km in southeastern Nevada, lies in the range at which waves are
likely to be trapped.

The first waves appear to be generated by the Sierra Nevada and the Cas-
cades, although the continued excitation of trapped waves at distances far

downstream is probably produced by the mountains in the basin and range
region of Nevada.
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Figure 20.5. Visible satellite imagery for 1715 GMT, 2 May 1984.

Given that the waves revealed in Fig. 20.5 are trapped waves, one can
draw general conclusions about the state of the atmosphere in their vicinity.
In order for mountain waves of any type to exist, a sufficiently strong wind
must be directed across the mountain at the ridge-top level. The minimum
wind speed required for waves will vary with the size and shape of the moun-
tain, but seems to lie in the range from 7 to 15 m s~! (Queney et al. 1960).
Since the waves are trapped, £2 values in the upper troposphere should be
significantly smaller than those in the lower troposphere. This requirement
is usually satisfied by a large increase in the wind with height, and the pres-
ence of one or more stable layers in the lower troposphere. Fig. 20.6 shows
the 700 and 200 mb analyses for this case. Note that the winds are oriented
almost perpendicular to the northern Sierras and to the Nevada ranges at
both 700 and 200 mb, and there is a dramatic increase in wind speed with
height. The thermodynamic properties of this air mass are illustrated in
Fig. 20.7 by the Winnemucca sounding taken at 0000 GMT on 3 May. A
pronounced stable layer is evident in the lower troposphere; the moist layer
that probably contained the wave clouds is also apparent.

Clouds From Vertically Propagating Waves

A different type of situation is shown in Fig. 20.8, in which clouds reveal
the presence of mountain waves along the eastern edge of the Front Range of
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Colorado’s Rocky Mountains at 1815 GMT on 7 November 1983. One can
conclude that the waves are vertically propagating for the following reasons:

e Only one wave crest is visible.

e The horizontal wavelength, though hard to determine, exceeds the width
of the wave cloud, which is roughly 100 km. This is far too long a
wavelength to be trapped.
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Figure 20.8. Visible satellite imagery for 1815 GMT, 7 November 1983.

Given that the waves are vertically propagating, one should again expect
a significant flow across the mountains, but in this case, little can be definitely
concluded about the vertical distribution of £2. As shown in Figs. 20.9 and
20.10, the increase in wind speed with height is less pronounced and the low-
level stable layers are weaker than in the previous example. This seems to
suggest that the difference between the waves in Figs. 20.5 and 20.8 can be
accounted for by differences in the atmospheric conditions (i.e., insufficient
decrease in £2 to trap the waves). However, the most significant difference is
probably due to the topography. The Front Range is a wide mountain range
so it tends to force long waves, which can propagate vertically even when £2
is very small. Reliable conclusions about the vertical distribution of wind
speed and stability can generally be obtained only when trapped waves are
present.

20.4.2. Distribution of Clouds

Returning to Fig. 20.8, note that although the winds over the Sierra
Nevada and the Rockies are quite similar, the cloud patterns are just op-
posite. The clouds are largely restricted to the upwind side of the Sierras,
whereas they appear on the downstream side of the Rockies.
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Figure 20.9. Analysis for 1200 GMT, 7 November 1983. (a) 700 mb; (b) 200 mb. The
poor agreement between the wind and height fields at 700 mb can probably be attributed
to orographic effects.

PRESSURE {mb)

2 \\\ x‘.\. T ) l/ — »fw--.- [N L
1000 >0 2 :
TEMPERATURE (°C)

Figure 20.10. Denver sounding taken at 1200 GMT, 7 November 1983.

Middle- and Low-Level Clouds

The difference betweeen the middle- and low-level cloud distributions can
be easily accounted for by differences in humidity. The moist maritime air
mass flowing inland from the Pacific must be lifted 3 to 4 km to traverse
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Figure 20.11. Streamlines in the steady airflow over an isolated asymmetric ridge with (a)
a steep windward slope; (b) a steep leeward slope. Probable location of wave-induced cirrus
is shaded.

the Sierras. In fact, most of the low-level flow is blocked and never passes
directly over the main ridge, but there is still sufficient lifting to produce
extensive regions of middle- and low-level clouds on the windward side of the
mountain. At 1800 GMT (the approximate time of the satellite picture) sur-
face stations upstream of the mountain in the Central Valley report multiple
layers of stratiform and cumuliform clouds. On the other hand, no clouds
appear upstream of the Colorado Front Range because the air approaching
the crest, having already traversed several mountain ranges, is drier, and
because less lifting is required to clear the crest of the Front Range. (Less
lifting is required to traverse the Rockies because the air upstream starts at
the elevation of the high intermountain plateau, not at sea level as in the
case of the Sierra Nevada.)

The distribution of low- and middle-level cloudiness is similar in the
lee of both mountain ranges. The cloud-free area in the lee of the Sierras,
sometimes referred to as a foehn gap, is produced by descending air, which
experiences net subsidence since the upstream flow is blocked. An addi-
tional contribution to the lee-side clearing occurs as moisture is removed by
precipitation over the mountains. Bishop, a surface station on the lee side,
reports precipitation in sight but distant from the station, presumably from
the foehn (or cap) cloud along the ridge crest. Although it is not obvious
from the satellite photo, the lee side of the Rockies is almost clear of middle-
and low-level clouds. As in the case of the Sierras, subsidence over the lee
slopes produces a reduction of relative humidity. Dry air is apparent below
400 mb in the Denver sounding (Fig. 20.10).

High-Level Clouds

The difference in the distribution of high cloud is harder to explain. One
can hypothesize that it is due to differences in the terrain profiles or to
moisture effects, or to some combination of the two.

The effect of differences in the terrain shape is illustrated in Fig. 20.11,
which shows the linear hydrostatic waves that develop in a Boussinesq fluid
flowing with uniform wind speed and stability over asymmetric mountains.
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20. Mountain Waves 487

In Figs. 20.11a,b the mountain contours correspond to the fifth and first
streamlines above the surface in Fig. 20.2c; the only difference in the three
cases is the phase of the disturbance at the ground. Fig. 20.11a shows the
streamline pattern forced by a mountain with a steep windward slope and a
gentle lee slope. This corresponds to the large-scale character of the Sierras,
which rise from sea level on the windward side, but descend only to the
level of the intermountain plateau in the lee. In contrast, the Colorado
Front Range corresponds to the situation shown in Fig. 20.11b, where the
elevation upstream exceeds the elevation in the lee. It must be emphasized
that this description applies only to the long wavelength characteristics of
the mountain; on a smaller scale, the lee slope of the Sierras descending
into Owens Valley is actually steeper than the windward slope. The vertical
coordinate in Fig. 20.11 is labeled in vertical wavelengths (L = 2xU/N). For
representative values of N and U, the heights of the high clouds in Fig. 20.8
would lie between 0.5L and 0.75L. At these heights there would be a net
downward displacement in the lee of the Sierras (Fig. 20.11a) and a net
upward displacement in the lee of the Rockies (Fig. 20.11b), which would
produce the observed distribution of high clouds.

A second possible explanation involves the influence of moisture on the
flow upstream of the Sierras. Suppose that both ranges are represented by
symmetric profiles and that the orographic cloud is forming at a physical
height which corresponds to a level of 0.75L over the Rockies as illustrated
in Fig. 20.12b. Durran and Klemp (1983) have demonstrated that a region of
deep cloudiness on the upstream side of a mountain can increase the wave-
length in vertically propagating waves by 30%, because the local stability
is reduced in the regions where the air is saturated. If the deep clouds up-
stream of the Sierras were to increase the vertical wavelength by 30% relative
to the (dry) value over the Rockies, the same physical height at which oro-
graphic cloud appears downstream of the Rockies would correspond to just
0.57L over the Sierras, which (as shown in Fig. 20.12a) would be an unfavor-

HEIGHT (vertical wavelengths)

Figure 20.12. Streamlines in the steady airflow over an isolated bell-shaped mountain when
the vertical wavelength in (a) exceeds the wavelength in {b) because of a reduction in the

stability due to cloudiness over the windward slopes. Probable location of wave-induced
cirrus is shaded.
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Figure 20.13. Cross section of the potential temperature field observed in a very strong
mountain wave over Boulder, Colo., on 11 January 1972. The heavy dashed lines separate
observations taken at different times; the dotted lines show the aircraft flight tracks; the
crosses indicate regions of turbulence. (From Lilly and Zipser, 1972.)

able region for lee-side cloud development because there is a net downward
displacement throughout most of the region.

If the previous two hypotheses are combined, so that the streamlines in
Fig. 20.11a are adjusted to reflect an increase in vertical wavelength, the
difference between the net vertical displacements in the upper troposphere
becomes even more pronounced. A more complete analysis of this case is
hampered by the lack of detailed information about the actual cloud levels,
and uncertainties about nonlinear effects.

20.5. Development of Large-Amplitude Mountain Waves

The concepts that rely on linear theory (Secs. 20.2-20.3) are implicitly
limited to relatively low-amplitude waves. Although they produce impressive
cloud formations, these low-amplitude waves have little direct impact on
human activities. In contrast, large-amplitude mountain waves can produce
damaging downslope winds and dangerous regions of clear-air turbulence.
An example of one such large-amplitude wave is shown in Fig. 20.13, which
is an analysis of data collected over Boulder, Colo., on 11 January 1972
by Lilly and Zipser (1972). Understanding of the dynamics governing the
behavior of large-amplitude mountain waves is, unfortunately, incomplete.
Three possible mechanisms have been suggested to explain the development
of large-amplitude waves such as the one shown in Fig. 20.13.
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20.5.1. Hydraulic Jump

Long (1953) and several subsequent investigators examined hydraulic
analogs to the atmosphere consisting of two or more immiscible fluids flow-
ing over a barrier. Long established a set of conditions under which a hy-
draulic jump will form downstream of the barrier, and suggested that the
mechanism that produces the hydraulic jump may be similar to one that pro-
duces strong waves and downslope winds in the atmosphere. This approach
has the merit of explicitly accounting for the nonlinearities in the system;
however, unlike the atmosphere, all the models considered have an upper
boundary consisting of either a free surface or a rigid lid. Since no upward
energy transport can occur across the upper boundary, vertically propagat-
ing atmospheric waves cannot be properly represented in hydraulic models.
At any rate, since most of the cases examined have been limited to a fluid
with no more than three homogeneous layers (i.e., N = 0 in each layer), any
comparison of results with waves in the continuously stratified atmosphere
must be primarily qualitative.

20.5.2. Reflection of Upward-Propagating Waves

A second mechanism for the generation of large-amplitude waves has
been suggested by Klemp and Lilly (1975), who examined the behavior of
linear waves in a multilayer atmosphere with constant stability and wind
shear in each layer. Unlike Scorer, they limited their investigation to wave-
lengths that would be long enough to propagate vertically throughout every
layer, even those with the smallest values of £ (in fact they assumed the
waves were hydrostatic). When an upward-propagating wave encounters a
region in which the Scorer parameter changes rapidly, part of its energy is
reflected back into a downward-propagating wave. The wave amplitude be-
low the reflecting layer is thus determined by the superposition of upward-
and downward-propagating waves. Klemp and Lilly found that in the case
of a three-layer atmosphere flowing over sinusoidal topography, the opti-
mal superposition occurs when each of the lower layers is one-fourth of a
vertical wavelength deep, in which case the downslope wind speed exceeds
that which develops in the presence of a single uniform layer by the factor
N1N3/N2, where Ny, N3, and N3 are the Brunt-Viisald frequencies in the
lower, middle, and upper layers. If the upper layer is assumed to represent
the stratosphere, this result suggests that the development of strong waves
will be favored when the lower troposphere is relatively stable and the lapse
rate in the remainder of the troposphere is nearly dry adiabatic.

The multilayer approach can be extended to more layers, and has the
advantage that, as the number of layers is increased, the mean state used
in the calculations can be configured to closely match an actual sounding.
Klemp and Lilly (1975) used a many-layered model, with reasonable suc-
cess, to predict downslope winds in Boulder, Colo., from soundings taken
upstream. However, since this is a linear model, it must be applied with
caution to the case of large-amplitude waves because the perturbation fields
in these waves are comparable in magnitude to the mean flow. Recent nu-
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merical experiments suggest that, in the case of some large-amplitude waves,
the predictions from linear multilayer models can be rather misleading.

20.5.8. Self-Induced Critical Layer

A third mechanism for the generation of large-amplitude waves has been
suggested by Clark and Peltier (Clark and Peltier, 1977; Peltier and Clark,
1979). They examined the behavior of large-amplitude mountain waves with
a nonlinear nonhydrostatic model, obtaining good agreement between their
calculations and the flow observed on 11 January 1972 over Boulder, Colo.
(Fig. 20.13). Their numerical approach has the advantage that it explicitly
accounts for nonlinear and nonhydrostatic effects, and it allows a detailed
representation of the atmospheric flow structure. They observed that a sub-
stantial increase in the strength of the wave occurs once the streamlines over-
turn and the wave “breaks.” The wave-breaking region is characterized by
strong mixing and a local reversal of the horizontal wind. Clark and Peltier
suggest that the energy in the upward-propagating wave is trapped below
this self-induced critical layer (the region where the wind reverses direction),
thereby producing large-amplitude waves such as the one in Fig. 20.13. A
disadvantage to the numerical approach is that the results reflect the highly
complex interaction of several factors, and therefore can be rather difficult
to interpret. At present, there is still some controversy about the role played
by self-induced critical layers on the subsequent amplification of the wave
(Lilly and Klemp 1980; Peltier and Clark, 1980).

20.6. Forecasting Mountain Waves

In spite of the advances in our understanding in the last 25 years, it is
still not possible to make detailed forecasts of the strength, duration, and
precise location of the mountain wave phenomena that occur in the real at-
mosphere. As a result, little improvement can be made to the forecasting
advice offered by Queney et al. (1960) and Colson (1954), which was based
on a combination of results from linear theory and observational experience.
Note, for example, that the work of Peltier and Clark (1979) on the impor-
tance of wave overturning provides little guidance to the forecaster trying to
assess the potential for wave development from an upstream sounding. One
reasonable approach would be to estimate the wave response according to
linear theory, and assume that if overturning is predicted it will occur in the
actual nonlinear flow as well. In fact, it has not yet been clearly established
whether the optimal upstream conditions for linear waves closely coincide
with those for large-amplitude waves.

Queney et al. (1960) described the conditions in which strong waves are
likely to develop:

¢ The mountain barrier in question has a steep lee slope. Theoretical
support for this once largely empirical criterion was obtained by Smith
(1977) and Lilly and Klemp (1979), who confirmed that asymmetric
mountains with steep leeward and gentle windward slopes are the most
effective generators of large-amplitude mountain waves.
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¢ The wind is directed across the mountain (roughly within 30°of perpen-
dicular to the ridge line) throughout a deep layer of the troposphere. The
wind speed at the level of the crest should exceed a terrain-dependent
value of 7 to 15 m s~1, and should increase with height.

o The upstream temperature profile exhibits an inversion or a layer of
strong stability near mountain top height, with weaker stability at higher
levels. Colson (1954) also suggested that weak stability below the inver-
sion favors the development of waves in the lee of the Sierra Nevada.

These conditions were originally established in order to predict trapped
waves, so that the second and the third imply a decrease in the Scorer param-
eter with height, between the inversion and the tropopause. The evaluation
of an approximation to the Scorer parameter,

¢ = g- , (20.27)
is also recommended. (The U,,/U term is not always negligible, but is omit-
ted because it is difficult to evaluate from the radiosonde reports available in
an operational environment.) Waves will be favored whenever the £* profile
decreases significantly with height.

The importance of vertically propagating waves and the role played by
the stratosphere have been recognized only in the last decade. The guidelines
for forecasting vertically propagating waves, based again on linear theory and
observations, are identical to conditions described by Queney et al. (1969)
and listed above, except for the role played by wind speed (the wind direction
and minimum speed criteria are unchanged). In the case of trapped waves, an
increase in the wind speed with height produces a decrease in £*, enhancing
the potential for wave trapping, so that roughly speaking, the stronger the
upper level winds, the greater the chance for lee waves. Klemp and Lilly
(1975) showed that the amplitude of vertically propagating waves reaches a
maximum when the phase shift between the ground and the tropopause is
one-half vertical wavelength. This implies that for a given stability profile,
the optimal wind speed distribution should satisfy

Ze
m zf ds (20.28)
z,
where 2; is the height of the tropopause and z, is the height of the topog-
raphy or the top of a blocked layer of air upstream of the mountain, and
m = 3.1416. If the stability distribution is suitable for intense waves, strong
upper tropospheric winds will generally be required to satisfy (20.28), but the
presence of very strong winds aloft (as in the case of the jet stream) will not
necessarily favor the development of large-amplitude vertically propagating
waves,

If strong waves of any type are forecast, clear-air turbulence and down-
slope winds are likely to develop as well. When the potential for downslope
winds is estimated, the synoptic-scale pressure gradient across the mountains
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should also be considered. As discussed in Sec. 20.2, mountain waves gen-
erate a mesoscale pressure distribution with high pressure upstream of the
crest and low pressure in the lee. Strong downslope winds are more likely
to develop when the synoptic-scale pressure gradient is in phase with the
wave-induced pressure gradient. For example, the strongest Colorado chi-
nooks occur during wave events when there is a large region of high pressure
upstream of the mountains to the west, and a rapidly developing lee-side
trough or low pressure center in the high plains to the east or northeast.
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