
CFD Homework 1: Optimization Exercises 

Part 1 
The code hw1.fJO is divided into sections involving different structures of simple algebraic operations computed across a 
square domain, and designed to demonstrate that faster processing times can be achieved if potential for optimization is 
recognised and exploited. The program is run using four different compiler options associated with different methods of 
optimization. The high optimization setting (-03) is then re-run with shared-memory parallelisation enabled for one and 
two CPUs. Five trials are performed for each compilation setup and the arithmetic average of the CPU times are calculated 
for each section of the code. All runs were performed within a thirty minute 'period, over which it is assumed the machine 
load was constant. The results are summarised in table 1 below. 
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Table 1: CPU limes used by seclions of hwl.j90, averaged over 5 I71nsfor each oflhe 4 difJerenl compiler oplions. The last lWo colwnns 
use the -03 configuration with shared memOlY parallelization (SMP)Ior 1 or 2 CPUs. 

Compiler option -00 disables optimizations so that all sections of the code take longer to execute. For the remaining 3 
setups (without parallelisation), the CPU times used are notably faster tor all portions of the code, with relative 
performance of the compilers varying between sections, depending on how well the setup is suited to optimizing the 
operation at hand. Compiler level-0l produces minimal speed optimizations without the capacity to pipeline. Level -02 
is the standard (default) option, enabling optimizations for speed and a variety of intra-file intraprocedural optimizations 
including pipelining, subroutine inlining and loop umolling. Level -03 optimizes most aggressively, enabling all -02 
optimizations, a larger variety ofloop transtormations and data pretetch. 

Sections 1a-e of the code deal with the computation of 
a(i,j) = (a(ij)*b(i,j) + c(ij)*d(i,j»**0.315 , (1) 

using slightly different methods, where a,b,c,d are scalar constants defined over the square domain. Section I a defines a(i,j) 
across the nxn matrix using a nested do-loop structure that acts to fill the matrix along its rows. Within the inner do-loop, 
nine operations are performed betore the nested index U) is increased by I: 

STEP 1: load a into RO 
STEP 2: load b into Rl 
STEP 3: R2 = RO * Rl 
STEP 4: load c into R3 
STEP 5: load d into R4 
STEP 6: R5 = R3 * R4 
STEP 7: R6 = R2 + R5 
STEP 8: R7 = R6 ** 0.315 
STEP 9: assign the value of R7 to a on the LHS 

Compiler setting -02 executes this section ot the code fastest. T e decrease in the CPU time spent on section 1a when ­
02 is used could be due to the possibility of constant propagation with this option, so that the known values of the 
constants a,b,c and d are substituted as soon as they are encountered in the code. The most aggressive optimization level (­
03) is not best suited tor this section and completed the task over a longer time period, relative to the -02 setup. It will be 
seen throughout the remaining parts of the code that the use of more forceful optimization settings does not guarantee 
higher performance unless the various loop transtormations enabled with it can be fully exploited. 

Section 1b performs an identical set of operations to la, but nests the loop on the (leftmost) i index instead of the j. 
Section 1b is thus executed much faster since it acts to fill the matrix in natural ascending storage order, which is colurnn­
major order for Fortran. Traversing a column-major array in row order is inefficient since data points accessed 
consecutively are not located in the same part of the computer memory (Thiyaga1ingam et al. 2003). Accessing the array in 



a marmer consistent with storage method ensures the data visited is still resident in the recent memory of the computer. 
Access to this cache memory reserve is much faster than accessing the RAM. 
The compiler setups -01 and -02 improve on the time taken by the unoptimized setting (--00), but the performance of [he 

highest optimization level is superior. Traversing the matrix in natural ascending storage order allows the prefetching 
capacity of the -03 compiler setup to be utilised. The speed of calculations exceeds the speed of data transfer between the 
RAM and the CPU. Loading the data before it is summoned by the CPU reduces wait states, enabling more operations can 
be performed in a shorter time. The -03 setup also enables superscalar loops to be constructed, so that independent 
operations can be executed simultaneously. By superscaling, only six operations are performed within the inner do-loop (j) 
before the nested index (i) is increased by 1: 

,--------------------, 
STEP 1: load a into RO AND load b into R1 
STEP 2: R2 = RO * Rl AND load c into R3 

AND load d into R4 
STEP 3: R5 = R3 * R4 
STEP 4: R6= R2 + R5 
STEP 5: R7= R6 ** 0.315 
STEP 6: assign the value ofR7 to a on the LHS 

Alternatively, for a given column (j), the -03 setup enables n simultaneous eq.(1)s could be computed for i=1,n. For 
example, to compute a(ij) in the first column of the matrix, the relevant set is: 

a(l,l) = (a(l,I)"'b(1,I) + c(l,I)*d(I,I»**0.315 (2a) 
a(2,1) = (a(2,1)"'b(2,1) + c(2,1)*d(2,1»**0.315 (2b) 

a(n,l) = (a(n,I)*b(n,1) + c(n,1)*d(n,I»**0.315 (2n) 
Since eqs.(2a)-(2n) are independent of one another, they can be performed in parallel, significantly reducing the total time 
taken to find a(ij) across the entire domain. 

Section Ie computes eq.(l) using 3 co~secutive do-loops. First, steps 1-3 above are computed for all i,j so that a*b is 
specified across the entire nxn matrix. The second loop performs steps 4-6, specifying c*d across the entire domain. The 
final loop sums the two products across the domain, computing the (0.315) power as the sum is found. All three loops are 
matched to Fortran's storage layout, maximising the cache hit rate and consequently, taking less time to solve eq.(I) across 
the array than the method in section lao However, the entire array must be accessed three separate times in this section. 
Each loop starts by calculating a(1,I) first, filling the (i,l) column of the matrix and finishing with the calculation of 
a(5000,5000) at the base of the (i,5000) column. By the start of the third loop, a*b at (1,1) is required to add to c*d(l,l), 
but over 49 million products have been calculated since it was found. The cache space is limited so it is likely that the 
RAM will have to be accessed. This entails a slower transfer of data, increasing the CPU time spent on section Ic (relative 
to 1b) for all compiler settings. 

Compiler performance for this section is improved as the optimisation level increases due to the increased capacity for 
parallelisation. This section of code can be further optimized by the higher level compiler using a combination of 
superscalar loops - as described above - and pipelining, overlapping the execution of successive instructions. An 
alternative approach is transforming the loops to reduce data transfer between the main memory and the CPU. When 
present, loops are often the most time consuming elements in numerical codes. Multiple (distinct) loops over the entire 
array create a large overhead, requesting repeated access to the same part of the array at different times. Compiler setup ­
03 allows the three different loops to be fused, decreasing the number of branches to the top of the loop considerably and 
increasing the likelihood that consecutive operations within the single loop load from the same cache lines, instead of from 
different regions of the RAM. The average time taken to complete section 1c using the -03 setup is therefore lowered 
closer to the time taken to complete section 1b. 

Section Id computes eq.(l) using array operations. The code is already vectorized so that vectors of values of a,b,c and d 
will be fetched from memory by all four compilers. Instead of calculating one element of the 5000x5000 matrix at a time, 
many data elements are operated on simultaneously, producing a highly efficient method of solving eq.(l). This approach 
achieves the fastest execution of eq.( 1) for all compiler setups in section 1 except -02, which solves eq.( 1) faster using the 
method in 1b. The compiler set to the highest optimization level performs best since it can handle the vector array 
operations in superpipelines. 

The method of solution of eq.(l) implemented in section 1e is the most time consuming approach after the approach used 
in la (which was characterised by a severely inefficient loop structuring), In this case, the increase in CPU time required 
for execution is caused by the recursive data dependency within the inner loop: 

a(iJ) = (a(i-l J)*b(ij) +... (3) 
which is one of the most severe vectorization inhibitors. The higher optimization compiler performed slowest due to its 
inability to vectorize and pipeline this equation. 



Section 2 solves variations of eq.(l) using subroutines, which are often used in codes to reduce duplication, minimising the 
length of a script, and decompose the program into simpler, more readable components. In 2a, the subroutine is called 
within the do-loop, introducing significant overhead associated with summoning the sub-routine and waiting for the return. 
The nested subroutine call also inhibits vectorization. The more aggressive optimization setups can inline intrinsics, 
replacing the subroutine call within the loop with explicit code from the subroutine. As a result, section 2a is executed 
quickly by the -02 and -03 compiler configurations. However, the lower level optimization setups -00 and -01 take 
much longer to complete section 2a since neither has the capacity to inline. 

For the three compiler setups that can vectorize, the fastest solution to eq.(l) is obtained by the method used in section 
2b. The computation of eq.(l) is performed within a do-loop contained within the subroutine. The subroutine is called 
within the main body of the code and the nxn solution matrix is returned, taking less time to compute than 2a since no 
initial inlining is required. 

The optimizations implemented by the higher level compiler setups listed above, confined the operations to a single 
CPU. For shared memory systems, there is potential for further speed up as the workload can be distributed across all 
processors sharing access to the same data arrays. To further this investigation into code optimization, the hw1.f90 script 
was recompiled using the most aggressive optimization setting (-03) with shared-memory parallelisation (SMP) turned on. 
The average results for the runs using 1 thread and 2 threads are shown in the two last columns of table 1. 

Parallelisation using one CPU yields the smallest (cumulative) CPU time for a completion of a full model run. The 
performance of this configuration for specific sections of the code is similar to that described for the ·...()3 level optimization 
with SMP turned off, however it is consistently faster since parallelisation is not restricted to the loop level but can occur at 
the subroutine and task level also. 
When two threads are used, sharing the same memory space and variables between routines, all sections of the code are 
executed much slower than when run with ifort -03 with the SMP switched off. This could be caused by the CPUs 
competing for critical sections. 

Part 2 
Optimization methods and parallelization issues are now investigated in a large atmospheric prediction model by running 
identical batch scripts for various jobs in The Advanced Regional Prediction System (ARPS), using executables that have 
been compiled with different optimizations/parallelizations on a superscalar DSM parallel system with shared memory 
nodes. The different configurations of the eight executables used is described in table 2 below, where the total CPU time 
and wall clock time for all batch runs is also listed 

Compiler 

Setting Description 

Total CPU Time 

(s) 

Wall Clock Time 

(s) 

I No automatic SMP 
Minimum optimization (-00) 

I CPU 5200.2 5203.0 

2 No automatic SMP 

High optimization (-03) 

I CPU 

1160.4 1166.5 

3 Automatic SMP 

High optimization (-03) 

I CPU 

5356.1 5400.5 

4 Automatic SMP 

High optimization (-03) 

2 CPUs 

5544.4 5602.3 

5 Distributed MPI (lx2) 
High optimization (-03) 

4CPUs 1565.0 783.8 

6 Distributed M PI (2x2) 
High optimization (-03) 

4CPUs 157\.9 393.7 

7 Distributed MPI (lx4) 
High optimization (-03) 

4CPUs 1642.4 411.3 

8 Distributed M PI (4xl) 
High optimization (-03) 

4CPUs 1610.5 403.3 



Table 2: Total CPU and wall clock limes for batch jobs executed using the compiler settings listed in the left-most column, 
where the negative numbers in brackers correspond to the optimization level assumed by the i/ort compiler, and the 
products in brackets indicate the method by which the domain is horizontally decomposed (e.g Ox4) implies the domain is 
divided into subdomains consisring ofone row and four columns). 

The total CPU time is the time taken to process the batch script on the CPU. The wall clock time is the real lime elapsed 
as the CPU processes a function and executes all other routine jobs at periods inbetween. As seen in table 2, and 
emphasized in figure 1 below, the wall clock time exceeds the total CPU time for all runs except those involving horizontal 
domain decompositions. 
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Figure 1. Total CPU (red) and wall clock times (blue) for the execution of the same balch script, using different compiler 
settings as detailed in table 1. 

By allocating separate parts of the array (and the computations required in these regions) to the 4 different CPUs available 
in configurations 5-8, the processors are more fully and efficiently utilised. A decrease in idle time causes the CPU to drop, 
and by working on different parts of the domain simullaneously, the CPUs execute the batch job faster, causing a drop in 
the total CPU time (which remains above the wall clock time since it is the sum of CPU time used by all processors). The 
decomposition of the domain into 2 parts resulted in a significant decrease in CPU and clock time, which was improved 
upon by the decomposition of the domain into 4 parts in configurations 6,7 and 8. The greatest speed up was attained by 
configuration 6, which involved splitting the domain into four equally sized arrays allowing similar workloads to be given 
to each of the four processors so that the load was balanced.. 

A surprising result is that configuration 2 - compiled without automatic shared-memory parallelization - processed the 
batch job in significantly less time than configurations 3 and 4 which include SMPs. Since all three configurations compile 
using aggressive optimisation (compiler ifort -03), it would seem that the forced SMP parallelization in 3 and 4 reduced 
the computation efficiency, making the execution of the batch job even slower than that conducted by compiler setup 1 
which disabled all optimizations. It is important to recall that ARPS is designed to run on massively parallel computers, but 
is freely available for download, so must be capable of running efficiently with a default high optimization compiler (such 
as that used in configuration 2). Further investigation into the structure of the code in ARPS is required to confino that this 
- combined with the high optimization setting - is the reason for the high-level of single CPU optimizations. 

The batch job takes the longest time to process with configuration 4. This could be due to the aforementioned 
ineffectiveness of the forced SMP combined with the increased overhead due to more frequent inter-processor 
communications (the availability of 2 CPUs). However, since two CPUs share the workload in configuration 4, we would 
expect that - if the load was equally balanced between the two - the wall clock time would be half the total CPU time. The 
fact that the wall clock time exceeds the total CPU time suggests that the program does not have exclusive use of the node. 

REFERENCES 

Thiyagalingam, J., O. Beckmann, and P. H. J. Kelly, 2003: An exhaustive evaluation of row-major, column-major and 
Morton layouts for large two-dimensional arrays, Performance Engineering: 19th Annual UK Pelformance Engineering 
Workshop, 340-351. 


