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ABSTRACT

Numerical integration of the compressible nonhydrostatic equations using semi-implicit techniques is complicated
by the need to solve a Helmholtz equation at each time step. The authors present an accurate and efficient technique
for solving the Helmholtz equation using a conjugate-residual (CR) algorithm that is accelerated by ADI precon-
ditioners. These preconditioned CR solvers possess four distinct advantages over most other solvers that have been
used with the Helmholtz equations that arise in compressible nonhydrostatic semi-implicit atmospheric models: the
preconditioned CR methods 1) can solve Helmholtz equations containing variable coefficients, alleviating the need
to prescribe a reference state in order to simplify the elliptic problem; 2) transparently include the cross-derivative
terms arising from terrain transformations; 3) are efficient and accurate for nonhydrostatic models used across a
broad range of scales, from cloud scales to synoptic-global scales; and 4) are easy to formulate and program. These
features of the CR solver allow semi-implicit formulations that are unconstrained by the form of the Helmholtz
equations, and the authors propose a formulation that is more consistent than those most often used in that it
includes implicit treatment of all terms associated with the pressure gradients and divergence. This formulation is
stable for nonhydrostatic-scale simulations involving steep terrain, whereas the more common semi-implicit for-
mulation is not. The ADI preconditioners are presented for use in simulations of both hydrostatic and nonhydrostatic
scale flows. These simulations demonstrate the efficiency and accuracy of the preconditioned CR method and the
overall stability of the model formulation. The simulations also suggest a general convergence criteria for the
iterative algorithm in terms of the solution divergence.

1. Introduction

In the formulation of numerical models for time-de-
pendent nonhydrostatic compressible atmospheric flow,
acoustic waves impose a severe time-step restriction for
algorithms using explicit time-integration methods.
Buoyancy oscillations also restrict time steps for these
algorithms in large-scale atmospheric flow applications.
Techniques used to circumvent these time-step restric-
tions integrate terms responsible for the acoustic modes
and buoyancy oscillations separately from, or in a dif-
ferent manner than, terms responsible for the resolved
slower modes. In general, these methods can be cate-
gorized as either split-explicit, where acoustic and buoy-
ancy terms are integrated explicitly with a smaller time
step than the slow-mode terms, or semi-implicit, where
the acoustic and buoyancy terms are integrated implicitly.

Split-explicit schemes are popular because they are
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generally efficient, easy to formulate and code, work
well on nested grids, are well suited for adaptive models
(which include overlapping grids, e.g., Skamarock and
Klemp 1993), are easily mapped to MPP computer ar-
chitectures, and can be used for models simulating a
broad range of scales, from cloud to synoptic-scale
flows. The leapfrog-based scheme of Klemp and Wil-
helmson (1978) is perhaps the most popular split-ex-
plicit approach, and Skamarock and Klemp (1992)
found that it is one of the few stable, robust split-explicit
schemes available. However, while the split-explicit
leapfrog-based models work well, it is not clear how to
generalize the split-explicit approach to potentially more
accurate or more efficient slow-mode integration meth-
ods. Skamarock and Klemp found that forward-in-time
schemes (e.g., Crowley-type schemes) for integrating
the compressible equations have considerable stability
problems when combined with explicit time splitting.
Other time-integration schemes, such as Adams–Bash-
forth and Runge–Kutta methods, share the stability
problems of the forward-in-time schemes when used in
concert with split-explicit integration of the acoustic
modes, at least in their most straightforward imple-
mentations. Finally, we do not know how to combine
a semi-Lagrangian integration with an efficient split-
explicit formulation.
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Semi-implicit schemes have been somewhat less pop-
ular because of the difficulty involved in solving the 3D
Helmholtz equation that arises in their formulation, al-
though efficient 3D models do exist (e.g., Cullen 1990;
Tanguay et al. 1990). These model formulations typi-
cally involve partitioning terms into those to be inte-
grated explicitly and implicitly by making use of a 1D
(in z) time-independent reference state. By design, the
resulting Helmholtz equations are linear, have constant
coefficients, and possess no cross-derivate terms (the
terrain terms are handled explicitly). As such, they can
be solved by a variety of methods. One of the primary
advantages of the semi-implicit approach is that it al-
lows a variety of integration methods for the slow
modes. For example, a semi-implicit formulation nat-
urally arises out of a semi-Lagrangian model formula-
tion, and within an Eulerian semi-implicit formulation,
forward-in-time and upwind-based integration methods
can be used. However, the need for a tractable Helmholtz
equation, brought about by the insufficiency of the
Helmholtz solvers in use, has produced very complex
model formulations. Moreover, there have been stability
problems associated with the choice of the reference
state that are not entirely understood (Cullen 1990;
Golding 1992; Cullen and James 1994; Semazzi et al.
1995), and there are known stability problems with the
explicit treatment of the terrain terms for nonhydrostatic
simulations involving steep terrain (Ikawa 1988).

A more consistent way to formulate a semi-implicit
compressible nonhydrostatic model, an approach not ar-
tificially constrained by concerns about the form of the
Helmholtz equation, is to include all terms associated
with the acoustic and buoyancy modes into the implicit
scheme, and to temporally linearize only about a par-
ticular time step. In this way, no artificial reference state
is needed, model formulations are simple, and the re-
sulting models are stable and robust. In this paper we
describe preconditioned conjugate-residual (CR) solvers
that efficiently solve Helmholtz equations derived in this

manner and demonstrate that these preconditioned CR
solvers are efficient for cloud-scale, mesoscale, and
large-scale simulation models.

We begin by presenting semi-implicit formulations for
the fully compressible models in the next section that
make use of the power and flexibility of the CR solvers.
However, for the purpose of examining and understand-
ing the behavior of the CR solvers, we also consider
models based on the simpler nonhydrostatic compressible
Boussinesq equations. Thus, we present in detail the con-
tinuous and finite-difference equations for a compressible
Boussinesq model and derive the Helmholtz equation that
arises in the semi-implicit discretization. We discuss the
implicit differencing of the buoyancy in the vertical mo-
mentum equation and the vertical advection term in the
thermodynamic equation that removes the Brunt–Väisälä
frequency time-step restriction (typically NDt , 1). In
section 3 we outline the CR method analyzed in detail
by Smolarkiewicz and Margolin (1994) and describe ADI
preconditioners. Results from numerical tests confirming
the efficiency and accuracy of the models are presented
in section 4, where we demonstrate model efficiency in
cloud-, meso-, and synoptic-scale simulations. A 2D
model for the fully compressible (non-Boussinesq) equa-
tions is demonstrated. Convergence criteria for iterative
solvers are discussed at the end of section 4 followed by
a summary in section 5.

2. Equations

a. Fully compressible system

To illustrate the approaches taken in semi-implicit,
nonhydrostatic compressible model formulation, it is
sufficient to consider the fully compressible nonhy-
drostatic equations for 2D adiabatic flow. These equa-
tions, with the terrain-following coordinate transfor-
mation of Gal-Chen and Somerville (1975) as expressed
in Durran and Klemp (1983), can be written as

]u ]p ]p ]u ]u
1 c u 1 G 5 2u 2 v 1 D , (1)p u1 2]t ]x ]z ]x ]z

]w ]p ]w ]w
1 c uH 2 B 5 2u 2 v 1 D , (2)p w]t ]z ]x ]z

]u ]u ]u ]u
1 wH 5 2u 2 uG 1 D , (3)u]t ]z ]x ]z

2]p c ]u ]u ]w ]P ]p ]ps o1 1 G 1 H 1 wH 5 2u 2 v , (4)1 2]t c u ]x ]z ]z ]z ]x ]zp

where (u, w) are the Cartesian velocity components, the
transformed coordinate

z (z 2 z )t sz 5 ,
z 2 zt s
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the coordinate transform terms G 5 ]z/]x and H 5
]z/]z, the ‘‘vertical’’ velocity in the transformed co-
ordinate system v 5 Gu 1 Hw, B 5 g(u/uo 2 1) is
the buoyancy,

R/cpp
P 5 P (z) 1 p 5 ,o 1 2po

the reference-state potential temperature

21
]Pou (z) 5 2g c ,o p1 2]z

and D denotes the dissipation terms. Here, the intro-
duction of the reference state is performed only to re-
move the large, canceling, hydrostatic terms in the ver-
tical momentum equation.

Existing semi-implicit nonhydrostatic models (e.g.,
Cullen 1990; Tanguay et al. 1990) use the time-inde-
pendent reference state to recast (1)–(4) as

]u ]p ]p ]p
1 c u 5 2c u9 2 c uG 2 ADV 1 D , (5)p o p p u u]t ]x ]x ]z

]w ]p ]p
1 c u H 2 B 5 2c u9H 2 ADV 1 D , (6)p o p w w]t ]z ]z

]u ]u ]u ]u ]u9o o1 wH 5 2u 2 uG 2 v 1 D , (7)u]t ]z ]x ]z ]z

2 2 2]p c ]u ]w ]P c c ]u ]wo o o1 1 H 1 Hw 5 2 2 1 H1 2 1 21 2]t c u ]x ]z ]z c u c u ]x ]zp o p p o

2c ]u
2 G 2 ADV . (8)pc u ]zp

The left-hand-side (lhs) terms in (5)–(8) are integrated
using an implicit formulation while the right-hand-side
(rhs) terms are evaluated explicitly. The acoustic
modes are associated with the pressure gradient terms
in (5) and (6) together with the divergence term in (8).
These terms on the lhs are linear, with a simple co-
efficient structure, while the terms on the rhs are gen-
erally nonlinear. Also, terms arising from the terrain
transformation that would create cross derivative terms
in the Helmholtz equation are handled explicitly. The
buoyancy term in the vertical momentum equation (6)
is handled implicitly along with the linearized vertical
advection term in the u equation (7). This part of the
formulation removes the time-step restriction arising
from gravity wave oscillations.

There are several potential difficulties with this ap-
proach. Stability with this partitioning of terms is not
guaranteed. Partitioning problems with the terrain terms
are discussed by Ikawa (1988), where he shows that this
formulation is unstable for nonhydrostatic simulations
using steep topography. The choice of uo can also affect
the stability of the implicit buoyancy calculations (e.g.,
Cullen 1990; Golding 1992; Semazzi et al. 1995). Ac-
curacy is also a concern when the reference state does
not reasonably reflect the mean state of an evolving
atmosphere.

A semi-implicit formulation more consistent and

straightforward than (5)–(8) is to integrate (1)–(4) di-
rectly, with all terms on the lhs treated implicitly. The
full pressure gradient and divergence terms along with
the gravity wave terms are differenced implicitly with
the understanding that the coefficients in front of the
derivative terms in (1), (2), and (4) are evaluated ex-
plicitly. The coefficient structure of the Helmholtz
equation is not regular and changes each time step, and
all terrain terms are included in the implicit formula-
tion. We have constructed a 2D model using this for-
mulation and present results in section 4d.

b. Boussinesq model

Model formulation, efficiency, and accuracy are more
easily addressed in the simpler Boussinesq framework,
in which the fully compressible equations (1)–(4) are
replaced by

]u ]f ]f ]u ]u
1 H 1 G 5 2u 2 v 1 D , (9)u]t ]x ]z ]x ]z

]w ]f ]w ]w
1 H 5 2u 2 v

]t ]z ]x ]z

1 D 1 B, (10)w
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]B ]B ]B
5 2u 2 v

]t ]x ]z

1 D , (11)B

]f ]u ]u ]w ]f ]f
21 c 1 G 1 H 5 2u 2 v . (12)s1 2]t ]x ]z ]z ]x ]z

In these equations f 5 cpuop, B 5 g(u 2 uo)/uo, and
the sound speed cs 5 300 m s21. We begin by first
considering explicit integration of the buoyancy terms.

Semi-implicit discretization of the terms giving rise
to the acoustic modes involves time averaging the terms
on the left-hand sides of (9), (10), and (12). This dis-
cretization looks similar for both the three-time-level
leapfrog schemes and the two-time-level forward-in-
time schemes, and can be expressed compactly for the
two-time level schemes on the C grid as

n n ndu + DtbPF (df ) 5 Dt[2PF (f )x x

2 ADV + D ]u u

[ F , (13)u

n n ndw + DtbPF (df ) 5 Dt[2PF (f ) 2 ADVz z w

zn+ D + B + bdB ]w

[ F , (14)w

ndB 5 Dt(2ADV + D ), (15)B B

n 2 n 2 ndf + Dtbc ¹·(dv ) 5 Dt(2c ¹·v 2 ADV )s s f

[ F . (16)f

In this formulation we are advancing the solution from
time nDt to (n 1 1)Dt and all terms on the rhs are
evaluated explicitly. The unknown variables are cast in
terms of their differences as in Golding (1992); dun 5
un11 2 un, dwn 5 wn11 2 wn, df n 5 f n11 2 f n, and
dBn 5 Bn11 2 Bn. The time-averaging parameter b 5
1/2 represents centered averaging and b 5 1 represents
a fully implicit (backward) scheme. The pressure gra-
dient terms

xPF (f ) 5 d f 1 Gd f ,x x 2z

PF (f ) 5 Hd f,z z

the divergence operator

x¹·v 5 d u 1 Gd u 1 Hd w,x 2z z

dx 5 [f(x 1 Dx/2) 2 f(x 2 Dx/2)] Dx21, likewise for
dz, and v 5 (u, w). A leapfrog formulation of (14)–(16)
requires a time step of 2Dt, a redefinition of the general
operator dc n 5 c n11 2 c n21, the use of time level n
2 1 in the rhs pressure gradient and divergence oper-
ators, replacement of the buoyancy term on the rhs of
(14) with Bn, and changes to the advection and dissi-
pation operators. Other semi-implicit formulations with
different weightings of the t 1 Dt, t, and t 2 Dt terms

(e.g., Coté et al. 1995) also produce formulations very
similar to (13)–(16), including semi-Lagrangian for-
mulations.

Time integration of (13)–(16) begins by advancing
the explicit equation (15) followed by solving a Helm-
holtz equation for df n. We formulate an equation for
df, as opposed to the full pressure f, to minimize can-
celation errors and reduce the magnitude of the rhs terms
in (13), (14), (16), and the Helmholtz equation. In the
nonhydrostatic models of Cullen (1990), Tanguay et al.
(1990) and others, the pressure equation is formed in
terms of a difference from the linearly extrapolated val-
ue of f n11 5 f n11 2 2f n 1 f n21. We do not find that
there is any significant advantage in using this form over
df because the amount of additional cancelation in the
rhs terms is small, both differences vanish for the
steady-state problem, and most remaining benefits of
using the extrapolated pressure can be gained by using
df n 5 df n21 as a first guess in the iterative CR solvers.
Also, in a forward-in-time scheme, f n21 is not available
unless explicitly saved.

The Helmholtz equation, derived by substituting for
dun and dwn from (14) and (15) into (16), is

b2Dt2¹·[PF(df n)] 2 dfn 2 R 5 0,2cs (17)

where

R [ Dtb[¹·(Fv)] 1 Ff,

and Fv [ (Fu, Fw). Equation (17) can also be written in
the form

L(dfn) 2 R 5 0, (18)

where

L(c) [ b2Dt2 ¹·[PF(c)] 2 c.2cs (19)

Equation (17) assumes an explicit discretization of
the terms responsible for gravity oscillations, and the
stability restriction for the entire scheme will be NDt ,
1 (see Skamarock and Klemp 1992). This approach is
typically suitable for atmospheric models having grid
lengths of a few tens of kilometers or less. For larger-
scale models, the buoyancy term B in (10) and the ver-
tical advection of the buoyancy, wH(]B/]z) in (11) can
be differenced implicitly in order to circumvent this
restriction, an approach first implemented by Cullen
(1990) and Tanguay et al. (1990). In this approach (11)
is recast as

]B ]B ]B ]B
1 Hw 5 2u 2 Gu 1 D , (20)B]t ]z ]x ]z

and (15) is replaced with the finite-difference represen-
tation of (20)

zn n ndB 1 bDtdw Hd B 5 Dt(2HADV 1 D )z B B

[ F , (21)B

where the advection term HADV includes the advection
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TABLE 1. The preconditioned conjugate-residual (CR) scheme.

initialize r , p 5 P (r0), Li(p0)0 0 21
i i i

begin loop n

b 5 2
n21 n21^r L(p )&

n21 n21^L(p )L(p )& (26a)
5 c 1 bpn n21 n21ci i i (26b)

1 bLi(pn21)n n21r 5 ri i (26c)

exit loop if \rn\ # e

q 5 P (rn)n 21
i i (26d)

evaluate Li(qn) (26e)

a 5 2
n n21^L(q )L(p )&

n21 n21^L(p )L(p )& (26f )
5 q 1 apn n n21pi i i (26g)

Li(pn) 5 Li(qn) 1 aLi(pn21) (26h)

end loop

terms on the rhs of (20). The discretized vertical mo-
mentum equation becomes

zn n ndw 1 Dtb[2 PF (df ) 2 dB ]z

zn n5 Dt[PF (f ) 2 ADV 1 D 1 B ]. (22)z w w

The solution procedure for the new system, (13), (16),
(21), and (22), is to eliminate dBn from (22) using (21),
and then solve the Helmholtz equation formed by sub-
stituting the revised equation (22) and (13) into (16). A
problem arises, however, when combining (21) and (22).
The new discretized momentum equation, with dBn

eliminated, becomes
zzn 2 2 n n ndw 1 Dt b dw Hd B 1 DtbPF (df )z z

zn n5 Dt[2PF (f ) 2 ADV 1 D 1 B 1 bF ]z w w B

[ F *.w (23)

The unknown dwn in (23) is averaged twice in z, and
the matrix representation of the vertical discretization
of (23) would have to be inverted in order to eliminate
dwn from the pressure equation (16) using (23). The
resulting Helmholtz equation would be very complex.
Cullen (1990) and Tanguay et al. (1990) circumvent this
problem by lumping all the dwn terms on to the diagonal,
such that

n 21 n 21dw 1 A DtbPF (df ) 5 A F *, (24)z w

where
zz2 2 nA [ 1 1 b Dt Hd B .z

The Helmholtz equation derived by substituting (13)
and (24) into (16) has the same form as (17) except
that the vertical pressure gradient PFz(f) 5 A21Hdzf
and A21 replaces Fw. This difficulty arising from theF *w
dw zz term is a result of the Lorenz grid vertical stag-
gering. No problem arises if u and w are collocated as
in the Charney–Phillips vertical staggering (Cullen and
James 1994; Semazzi et al. 1995).

3. Conjugate-residual solver and preconditioners

a. Conjugate-residual solver

The basic CR solver we use is a special case of the
truncated generalized conjugate residual, GCR(k), meth-
od of Eisenstat et al. (1983), which is a nonsymmetric
variant of the conjugate gradient (CG) approach. As
discussed in Smolarkiewicz and Margolin (1994), CG
algorithms can be interpreted physically as finite-dif-
ference schemes for integrating (in a pseudo-time to a
steady state) a damped oscillation equation with forcing
equal to the residual error r [ L(c) 2 R of the linear
elliptic problem L(c) 5 R. Arbitrary coefficients mul-
tiplying pseudo–time derivatives of the oscillation equa-
tion, as well as the pseudo–time step of the integration,
are derived variationally for each iteration by minimiz-

ing a selected error norm. Given certain properties ofL,
this assures optimal convergence (in the selected norm)
of the subsequent iterates to the solution of the elliptic
problem at hand. Depending upon the particular form
of the finite-difference approximation of the oscillation
equation and the selected norm, a variety of CG schemes
can be derived. We use CR schemes that minimize the
mean square residual \ r \2. These schemes do not require
(for their monotone convergence) the symmetry of the
matrix representing L on the grid—a necessary as-
sumption for the validity of the classical CG scheme of
Hestenes and Stiefel (1952). This makes CR schemes
especially well suited for solving complex elliptic prob-
lems typical in modeling atmospheric flows (Kapitza
and Eppel 1992; Smolarkiewicz and Margolin 1994).

The GCR(k) algorithm employs the kth-order oscil-
lation equation, and the basic CR scheme employed in
this paper utilizes the second-order equation

2] c 1 ]c
1 5 L(c) 2 R, (25)

2]t T ]t

where T(t) is an arbitrary coefficient. Standard finite-
difference discretization of the pseudo–time derivatives
on the lhs of (25), forming the associated scheme for r
[in essence, by acting with L on both sides of the finite-
difference form of (25)], and the variational determi-
nation of the two coefficients (related to T and Dt) by
minimizing \ r \2 lead (cf. sections 2 and 3 in Smolar-
kiewicz and Margolin 1994) to the elementary CR al-
gorithm (Stiefel 1955) summarized in Table 1 (where
the preconditioner P [ P 21 [I, the identity matrix;
preconditioners will be discussed in the next section).

In Table 1, subscript i [ [i, j, k] denotes the discrete
representation of a field on the grid, and ^jz& [ Sijizi.
symbolizes the inner product. To integrate the discre-
tized counterpart of (25) to steady state without pre-
conditioning (P [ I ), one begins with an initial guess

, and initializes accordingly the residual error 50 0c ri i
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Li(c 0) 2 Ri and the auxiliary variable pi (often referred
to as the direction vector) 5 . The residual error0 0p ri i

measures how well a solution satisfies the elliptic prob-
lem at hand, whereas the direction vector measures the
rate of change of the residual error itself. For negative
definite L (i.e., for dissipative, ‘‘energy’’ decreasing op-
erators) the problem is well behaved, and successive
trial solutions in (26b) [see Table 1 for Eqs. (26a)–nci

(26h)] produce successively smaller solution errors in
(26c), as measured by \ r \2. As each solution is gen-
erated, an arbitrary error norm can be evaluated and,
when this error norm is sufficiently small, the latest trial
solution is taken as the converged result.

Several features of the CR algorithm make it attrac-
tive for use in solving the discrete Helmholtz equation
(17). First, the operator L is never explicitly inverted
and its exact form need not be explicitly coded. In our
models we use the subroutines that compute the pressure
gradients and divergence in the momentum and pressure
equations to evaluate L(c). After two evaluations of the
operator L in the computation of r 0 and L(p0) in the
initialization, there remains only one evaluation of the
operator (26e) for each CR iteration; the other evalua-
tion of L is computed using the recursion relation (26h)
and the new residual is computed using the recursion
relation (26c).

b. Preconditioners

The common perception of CG methods is that to be
truly effective they require acceleration by some pre-
conditioner, and we have found this to be true for our
problem. A preconditioner recasts the oscillation equa-
tion (25) into

2] P(c) 1 ]P(c)
1 5 L(c) 2 R,

2]t T ]t

where P is the preconditioning operator (i.e., precon-
ditioner). The resulting preconditioned basic CR scheme
has been summarized in Table 1. There is no general
method for designing an optimal preconditioner (Ax-
elsson 1994, section 7). In the CR scheme (26), the
preconditioner P can be, in principle, any linear operator
such that LP 21 is definite. Its goal, however, is to aug-
ment the governing problem L(c) 2 R 5 0 with an
auxiliary problem P 21[L(c) 2 R] 5 0, which converges
faster than the original problem due to a closer clustering
of the eigenvalues of the auxiliary elliptic operator P 21L.
For the preconditioner to be useful, the convergence of
the auxiliary problem must be sufficiently rapid to over-
come the effort associated with inverting P in (26d). In
general, the closer P approximates L, the faster CR con-
verges but the more difficult it will be to invert P. For
example, in the P [L limit, CR converges in one it-
eration but the entire effort of solving the elliptic prob-
lem is placed into inverting P (bringing us back to the
starting point), whereas in the P [ I limit, inverting P
is trivial but there is no acceleration of the CR scheme.

In between, there is great flexibility in designing pre-
conditioners exploiting either direct or relaxation meth-
ods in step (26d) of the CR procedure. This flexibility
adds a degree of freedom to the design of conjugate
gradient methods, which itself constitutes an established
area of research (see Axelsson 1994 for a review).

The preconditioner we use is the ADI method, which
seeks the solution to (26d) by advancing the pseudo-
time-dependent problem

]q
5 P(q) 2 r (27)

]h

to steady state, performing an implicit pseudo-time h
integration alternately in each coordinate direction. A
succinct review of ADI methods for solving elliptic
equations is given in Roache (1972), and we follow the
classical ADI discretization.

For simplicity, consider as an analog to (27) the sim-
ple heat equation

q 2 D(q 1 q ) 5 r.h xx zz

Here, the subscripts denote partial differentiation and D
is a constant heat conductivity. The finite-difference
ADI formulation can be expressed as

Dh
m11/2 m(I 2 b d )q 5 (I 1 b d )q 1 r (28a)1 xx 2 zz 2

Dh
m11 m11/2(I 2 b d )q 5 (I 1 b d )q 1 r, (28b)2 zz 1 xx 2

where b1 [ DDh/2Dx2, b2 [ DDh/2Dz2, dxxq [ qi21,k

2 2qi, k 1 qi11,k, and dzzq [ qi,k21 2 2qi,k 1 qi,k11.1 The
free parameter in this problem is Dh, and one wishes
to choose it such that the steady state is approached in
the fewest number of steps. The most efficient imple-
mentations of ADI will cycle around a number of values
of Dh.

Used as an elliptic solver, ADI advances a pseudo-
time-dependent equation to steady state. However, it
need not be iterated to the convergence when used as
a preconditioner in (26d). One ADI iteration per CR
iteration is sufficient to substantially accelerate the CR
scheme. Thus, we do not completely invert the operator
P in (27) but only use the approximate inversion pro-
duced by the single sweep of the ADI scheme [(28a)
and (28b)]. Also, as we shall demonstrate in the next
section, abbreviated operators P ø L in (27) accelerate
convergence as well, while simplifying the design and
overall efficiency of the ADI preconditioner. Hence the
ADI preconditioner contains two levels of approxima-
tion; P only approximates L in (27), and the single ADI
sweep only approximates P 21.

1 Three-dimensional ADI schemes are not straightforward exten-
sions of the two-dimensional factorization presented here; the
straightforward extension is unstable. Readers should refer to Roache
(1972) or Douglas (1962) for a discussion of stable factorizations.
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FIG. 1. Perturbation u (a) at t 5 0 for the hydrostatic- and non-
hydrostatic-scale inertia–gravity wave simulations plotted with a con-
tour interval of 1023 K. The analytic solution for (b) the hydrostatic
wave at 60 000 s, and (c) the nonhydrostatic wave at 3000 s, both
plotted with a contour interval of 0.5 3 1023 K. Negative contours
are dashed.

In cases where the flow is largely hydrostatic (typi-
cally in model configurations using large grid aspect
ratios Dx/Dz), we have found that using the ADI pre-
conditioner with only the vertically implicit element re-
tained [using (28b) without (28a) and setting qm11/2 5
qm] significantly increases the efficiency of the precon-
ditioned ADI scheme. With large grid aspect ratios, the
coefficients multiplying the vertical second derivatives
will be much greater than those multiplying the hori-
zontal derivatives (the coefficient is proportional to the
square of the aspect ratio), and this modified ADI proves
efficient. The one-dimensional ADI preconditioner also
accelerates the CR scheme when grids are isotropic (Dx
; Dz), but the full ADI accelerates the CR scheme
substantially more on isotropic grids. In all cases we
use an initial guess q0 5 0 in the ADI, and we have not
found a different initial guess that further accelerates
the CR-ADI scheme.

The 1D ADI preconditioner is similar to the hydro-
static preconditioner in a conjugate gradient solver for
the Poisson equation used by Hill and Marshall (1995)
in an incompressible nonhydrostatic ocean model (hy-
drostatic in that the preconditioner gives the exact so-
lution in the hydrostatic limit). The efficiency of their
preconditioner suggests that a number of efficient pre-
conditioners exist for any particular problem. The ADI
is, perhaps, a more flexible preconditioner for the com-
pressible system, particularily in the case where flows
are significantly nonhydrostatic. Also, the CR solver
does not require a symmetric Helmholtz problem,
whereas the conjugate gradient method used by Mar-
shall et al. requires a symmetric Poisson problem.

4. Numerical examples

a. Accuracy

The efficiency and accuracy of split-explicit formu-
lations for a Boussinesq model were examined in Ska-
marock and Klemp (1994), where numerical simulations
of small amplitude propagating inertia–gravity waves
were compared with analytic solutions to the linearized
equations for both nonhydrostatic and hydrostatic flow
regimes. Herein, we compare solutions from the leap-
frog semi-implicit Boussinesq model described in sec-
tion 2b with those analytic solutions and the split-ex-
plicit model solutions in order to verify the accuracy
and efficiency of the CR scheme. In constructing the
semi-implicit models, all we have done is replace the
small-time-step code in the split-explicit model with the
semi-implicit code.

The analytic solutions are given in Skamarock and
Klemp (1994) and are depicted in Fig 1. The waves are
excited by an initial u perturbation 1022 K. For the non-
hydrostatic waves, the periodic channel has a length of
300 km, a height of 10 km, Dx 5 Dz 5 1 km, and a
mean advection speed of U 5 20 m s21 is prescribed
along with an initial perturbation half-width of 5 km.

For the hydrostatic waves, the periodic channel has a
length of 6000 km, a height of 10 km, Dx 5 20 km,
and Dz 5 1 km. Again, a mean advection speed of U
5 20 m s21 is used and the initial perturbation half-
width is 100 km. Figures 2a and 2b depict the rms error
in the u fields from the model solutions for the non-
hydrostatic and hydrostatic simulations, respectively.
The semi-implicit model is generally as accurate as the
split-explicit model in both cases.

The results in Figs. 2a and 2b are computed using
conservative convergence criteria in the CR Helmholtz
solver. Obviously, one does not want to expend more
effort solving the Helmholtz equation than necessary,
but without recourse to comparison with an exact so-
lution we must look elsewhere for a measure of the
solution accuracy. Figures 3a and 3b present the error
at the end of the simulations with the semi-implicit mod-
el versus the CR convergence criteria. In this compar-
ison we nondimensionalize the Helmholtz equation (17),
dividing by , and the convergence criteria used is that2cs

the maximum absolute value of the dimensionless re-
sidual be less than e. In both cases the solution error is
unchanged when e is at or below a value ec. We define
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FIG. 2. Normalized rms errors for (a) the hydrostatic and (b) the
nonhydrostatic inertia–gravity wave simulations.

FIG. 3. The rms errors and rms divergence for (a) the hydrostatic
and (b) the nonhydrostatic inertia–gravity wave simulations.

ec to be the value of epsilon below which the solution
error remains unchanged and the point at which CR
iterations should cease. We discuss a priori estimates of
ec in section 4e. We have also plotted the rms divergence
as a function of the convergence parameter e in Figs.
3a and 3b. The divergence is and should be nonzero in
the compressible system, and we find that the rms di-
vergence parallels the solution error. It is constant for
values of e less than ec, and grows for e . ec. In sim-
ulations where we do not have the exact solution, we
find that the divergence exhibits behavior similar to this
case. Hence, we will take ec to be the value of e at which
the solution divergence begins to increase.

We show the CPU time and iteration count for the
nonhydrostatic and hydrostatic simulations in Table 2,2

2 The simulations were performed on an SGI R4400 workstation.
The split-explicit model results reflect a 50% speed increase over the
SGI R4000 workstation used in Skamarock and Klemp (1994).

and compare these with the split explicit model results.
The unpreconditioned conjugate residual scheme is rea-
sonably efficient for these problems because the cost of
a CR iteration is approximately that of a small (acoustic)
time step in the split-explicit model. Given that the num-
ber of small time steps per 2Dt leapfrog time step in
the split-explicit models is of order 10, the CR con-
vergence in order 10 iterations should be efficient. Also,
we have simulated the hydrostatic inertia–gravity wave
with a 600-s time step and plotted the results in Fig.
2a. For the explicit buoyancy scheme (14) and (15), the
maximum time step is 200 s (NDt , 2 for the leapfrog
model), but for the implicit buoyancy scheme there is
no time step restriction based on the buoyancy oscil-
lations, although the solution error increases because of
the larger time step. We have also run the nonhydrostatic
CR simulation with a larger time step (Fig. 2b), and the
result has shown larger solution error. The cost of the
simulations, including the total number of CR iterations
needed, is less in the simulations using the larger time
step as evidenced in both the hydrostatic and nonhy-
drostatic cases (see Table 2). This is not generally the
case; more often we find that a larger time step increases
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TABLE 2. Inertia–gravity wave simulation statistics for the unpreconditioned CR solver.

e Dt (s)
Time
steps

CR
iterations

per
acoustic
steps per
time step

Non-
acoustic
CPU (s)

Acoustic
CPU (s)

Total
CPU (s)

Hydrostatic inertia–gravity wave
Split-explicit 200 300 10 4.37 15.42 19.79
Semi-implicit

u-explicit
1.4 3 1027

1.4 3 1028

200
200

300
300

10.7
18.3

4.32
4.32

16.88
26.79

21.20
31.11

Semi-implicit
u-implicit

1.4 3 1027

1.4 3 1028

4.2 3 1028

4.2 3 1029

200
200
600
600

300
300
100
100

9.4
11.0
16.8
25.4

4.05
4.13
1.46
1.33

18.06
20.26

9.41
13.26

20.11
24.39
10.87
14.60

Nonhydrostatic inertia–gravity wave
Split-explicit 12 250 8 3.71 10.18 13.89
Semi-implicit

u-implicit
8.0 3 1028

8.0 3 1029

2.0 3 1028

12
12
30

250
250
100

9.5
15.5
10.3

3.53
3.62
1.46

12.88
9.77

12.19

16.41
23.39
13.65

FIG. 4. Hydrostatic-scale mountain wave simulation at 40 000 s.
The potential temperature u is contoured in gray with an interval of
0.5 K. The vertical velocity is contoured with an interval of 0.2 m
s21. The plotted region is 800 km 3 10 km.

the total number of CR iterations needed for a simu-
lation.

b. Preconditioners for the terrain formulation and
time-step considerations

The previous examples involved a very simple Helm-
holtz equation; the simulations included no orography
and the coefficients in the Helmholtz equation were con-
stant. The semi-implicit model did not require precon-
ditioning in the CR scheme for efficiency. Here, we
simulate essentially hydrostatic and strongly nonhy-
drostatic nonlinear mountain waves and we find CR
preconditioning is necessary for model efficiency; 1D
(only vertically implicit) ADI is found to be the most
efficient preconditioner for anisotropic grids (the hy-
drostatic mountain-wave case) and multidimensional

ADI is found to be most efficient for isotropic grids (the
nonhydrostatic case). In this section, we also consider
model formulations where cross-derivative terms are in-
cluded in the Helmholtz equation.

Figure 4 shows a mountain wave solution at 40 000
s, just prior to wave breaking, for flow over a bell-
shaped mountain of half-width 50 km and height 1 km
embedded in a mean flow of 20 m s21 with a constant
atmospheric stability of N 5 0.02 s21. The model con-
figuration is Dx 5 10 km and Dz 5 420 m (101 3 45
grid points), and Dt 5 50 s. In these simulations we are
using a forward-in-time two-time-level model with the
elementary second-order Crowley scheme for advec-
tion. The flow is very nearly hydrostatic with the 50-km
half-width, and we precondition using ADI with only a
single implicit z sweep with b2 5 75 in (28b) (see sec-
tion 3b). We have verified that we do not need to include
the cross-derivative terms in the preconditioner (cf. Ber-
nadet 1995); preconditioners that include the cross-de-
rivative terms do not perform better and are more than
twice as expensive per preconditioning sweep. Figure
5a shows the rms divergence as a function of the con-
vergence parameter e and also presents the CR iterations
for the convergence parameter using both the unpre-
conditioned and the preconditioned CR. An ADI pre-
conditioning sweep, using (28b), cost significantly less
than a small time step in the split-explicit model or a
CR iteration in the semi-implicit model, thus we find
that the model is efficient with preconditioning given
that fewer than ten preconditioned CR iterations are
needed per time step. The unpreconditioned model is
not efficient; at the minimum convergence level (e ;
1026 in Fig. 5a), approximately 50 unpreconditioned CR
iterations are needed per time step versus 5 for the pre-
conditioned scheme.

To further examine the preconditioner, we have re-
duced the mountain width to 5 km, and set Dx 5 1 km.
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FIG. 5. The rms divergence and average number of CR iterations
per time step for (a) the hydrostatic and (b) the nonhydrostatic moun-
tain wave simulations. The CR iterations for the unpreconditioned
CR in the hydrostatic case are multiplied by 1021.

In this formulation, the largest value of the coefficient
G in (9) is 0.25, which produces a significant cross-
derivative term in the Helmholtz equation. Figure 5b
shows the maximum divergence as a function of the
convergence parameter e, and also presents the CR it-
erations for the convergence parameter using both the
unpreconditioned and the preconditioned CR. Figure 5b
depicts results for both full and vertically implicit-only
ADI preconditioning. Both preconditioners dramatically
accelerate the CR scheme, with the full ADI precon-
ditioner generally requiring half the number if CR it-
erations for convergence compared with the vertically
implicit-only preconditioner. Again, we verify that the
cross-derivative terms need not be included in the pre-
conditioner, even here in the case where they have co-
efficients of O(1). The model is efficient in this simu-
lation [a preconditioning sweep using (28b) and/or (28a)
without the cross-derivative terms is still less expensive
than a split-explicit small time step or a CR iteration].
Moreover, the model is stable for this simulation, where-
as semi-implicit formulations that handle the terrain
terms explicitly would be unstable (Ikawa 1988).

We have also integrated a leapfrog semi-implicit for-

mulation of the terrain model, and have varied the time
steps in both the leapfrog and forward-in-time models.
The results show that the CR iterations scale roughly
with the time step, that is, a doubling of the time step
size leads to doubling the number of CR iterations re-
quired to reach a specified convergence level. This result
is independent of preconditioner use. In the leapfrog
formulation, the effective time step of the semi-implicit
portion of the scheme is 2Dt, while the effective time
step for the forward-in-time scheme is Dt. Thus, assum-
ing all other elements remain unchanged, the CR so-
lution in the forward-in-time model will require half the
cost of the corresponding leapfrog-model solution. Nu-
merical simulations with a leapfrog semi-implicit terrain
model for these cases confirm this. However, the gen-
erality of these results is not certain given the results
from the inertia–gravity wave tests (section 4a, Table
2) in which the number of CR iterations did not scale
directly with the time step.

c. Efficiency for large problems

The cost per time step of conjugate residual schemes
is roughly proportional to n k (e.g., n n in a sim-Ï Ï
ple 2D elliptic problem), where n is the number of points
in the solution domain and k is the condition number
of the matrix representing the discretized elliptic prob-
lem (Stoer 1983). This cost can render high-resolution
simulations prohibitively expensive, especially com-
pared with the cost of a time step in the split-explicit
models, proportional to n, and the cost of direct methods
for solving Helmholtz equations, generally proportional
to n log(n). Our experience is that the preconditioners
reduce the costs of the simulations to where they are
more nearly proportional to n log(n); the number of
iterations is only weakly dependent on problem size.

To illustrate this behavior (as well as to examine the
robustness of our approach for strongly nonlinear flows
and to again verify the implicit buoyancy formulation)
we have performed 3D simulations of baroclinic waves
with the Boussinesq model. These simulations, carried
out originally by Rotunno et al. (1995) using a split-
explicit model formulation, are performed on low and
high resolution grids (41 3 81 3 61 grid points, Dx 5
Dy 5 100 km, Dz 5 250 m, Dt 5 450 s, and 161 3
321 3 61 grid points Dx 5 Dy 5 25 km, Dz 5 250 m,
Dt 5 90 s, respectively) with and without precondi-
tioning of the CR solver. Figure 6a depicts the rms di-
vergence as a function of e for a selected time in two
of these simulations. Again, the divergence is constant
for e , ec and increases for e . ec. Also shown is the
number of CR iterations necessary to achieve a con-
vergence level e without and with the preconditioner
(Fig. 6b), in this case the ADI using only the a single
z-implicit pass per CR iteration (28b) and the coefficient
b2 5 100. The nonpreconditioned CR takes an inordi-
nate number of iterations, while the preconditioned CR
takes only a small number of iterations to reach con-
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FIG. 6. (a) The rms divergence and (b) the average number of CR
iterations per time step for the coarse- and fine-resolution baroclinic
wave simulations. The CR iterations for the unpreconditioned CR are
multiplied by 1021.

FIG. 7. The rms divergence and average number of CR iterations
per time step for (a) the hydrostatic and (b) the nonhydrostatic moun-
tain wave simulations using the fully compressible model. The CR
iterations for the unpreconditioned CR in the hydrostatic wave sim-
ulations are multiplied by 1021.

vergence. Intuitively, we believe that the ADI precon-
ditioner quickly finds the hydrostatic component of the
solution; for the large Dx and large aspect ratios in these
simulations (Dx/Dz 5 400, 100) the solution is essen-
tially hydrostatic. We have found that this precondi-
tioner is efficient for all flows that are essentially hy-
drostatic (typically simulations with Dx $ 5 km).

We have also performed simulations of buoyant ther-
mals at nonhydrostatic scales in three spatial dimensions
and find the same general behavior. The number of CR
iterations is only weakly dependent on problem size,
and the preconditioned CR method remains efficient
even for large problems. As in the nonhydrostatic-scale
mountain wave simulations, multidimensional (3D) ADI
was used, in this case incorporating the factorization
described in Roache (1972, 94).

d. Fully compressible terrain model

We have constructed a 2D terrain model using the
full equations based on the formulation described in

section 2a where we solve (1), (2), (4), and (9). In the
pressure gradient terms and divergence terms u at time
t is used, and p at time t is used to evaluate the sound
speed . We also use u at time t in the implicit treatment2cs

of the vertical advection of u (used to circumvent the
gravity wave time-step restriction). For flows in which
u and p possess structure at all scales, the coefficients
in the Helmholtz equation will contain structure at all
scales, and we wish to determine whether this effects
the efficiency of the CR solver and the relationship of
the divergence to the convergence parameter e.

We have repeated the mountain wave simulations pre-
sented in section 4b using this model. The results are
similar except that the wave amplitude differs given the
variation of density with height, and the wave overturns
sooner. Figure 7 shows the maximum divergence as a
function of the convergence parameter e, and also pre-
sents the CR iterations as a function of the convergence
parameter using both the unpreconditioned and the pre-
conditioned CR for both the hydrostatic- and nonhy-
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FIG. 8. Normalized rms divergence versus the normalized conver-
gence parameter for all simulations. The scaling velocities u9 are 1022

m s21 for the inertia–gravity wave simulations, 1 m s21 for the moun-
tain wave simulations, and 10 m s21 for the baroclinic wave simu-
lations. The data are 1) the baroclinic wave coarse-grid and 2) fine-
grid simulations, 3) the hydrostatic and 5) the nonhydrostatic inertia–
gravity wave simulations, 4) the fully compressible hydrostatic and
8) nonhydrostatic mountain wave simulations, and 6) the Boussinesq
hydrostatic and 7) nonhydrostatic mountain wave simulations.

drostatic-scale simulations. The divergence for the fully
compressible model,

212]u ]u ]w c ]Ps o1 G 1 H 1 wH ,1 2]x ]z ]z c u ]zp

exhibits the same behavior as in the Boussinesq case;
that is, its rms value is constant for e less than some
critical value and rises for e . ec. The preconditioners
are as effective as in the Boussinesq cases and the total
number of iterations needed for acceptable convergence
using the preconditioned CR scheme is O(10). The full
ADI preconditioner is significantly more efficient than
the vertically implicit-only ADI preconditioner for the
relatively isotropic grid (Fig. 7b), as was the case in the
Boussinesq simulations (Fig. 5b).

e. Convergence criteria

The overall solution error can be affected by the error
in the Helmholtz solution; however, at some point (at
ec in our examples) increased accuracy of the Helmholtz
solution does not result in increased accuracy of the
model solution. We seek an a priori estimate of ec to
facilitate general use of a compressible model that uses
the CR solver. In the anelastic system, Smolarkiewicz
et al. (1997) stops the CR iterations when the divergence
is sufficiently small such that spurious divergence in the
anelastic momentum and thermodynamic equations re-
sults in solution errors below the truncation errors of
those discretizations. This and other heuristic arguments
lead to the general result that Dt div(V) , e min(C, L),
where C and L are the magnitudes of the Courant and
Lipschitz numbers, C 5 \DtV/Dx\ and L 5 \Dt(]V/]x)\.
Generally, e , 1023, 1024 is sufficient in semi-Lagran-
gian models, although smaller values of e may be nec-
essary in Eulerian models.

The divergence is nonzero in the compressible sys-
tem, and we cannot directly appeal to the divergence-
based arguments in Smolarkiewicz et al. We find, how-
ever, that a convergence criteria similar to Smolarkiew-
icz et al. can be constructed for all the simulations we
have performed. The convergence level ec takes the form

u9Dt
e ; d , (29)c Dx

where u9 is the perturbation velocity in the system, that
is, it is not the mean wind in the system but rather it is
the perturbation wind (typically umax 2 umin). An order
of magnitude estimate of the perturbation velocities ap-
pears sufficient to generate reasonable estimates for the
rms divergence. In the inertia–gravity wave simulations,
for example, the perturbation velocity 1022 m s21 is three
orders of magnitude smaller than the mean advection
velocity U 5 20 m s21. Here, d is the scaling factor for
the divergence in (29), and we use d ø 5 3 1023. The
scaled divergence data from all our simulations, along
with the scaling velocities, are given in Fig. 8. The

scaled divergences collapse roughly onto the same
curve. Equation (29) was arrived at by our observation
that e ; Dt rms [div (V)], and that rms [div (V)] ;
du9/Dx. Thus, a reasonable estimate of u9 or the rms
[div(V)] is all that is needed to determine ec prior to a
simulation.

5. Summary

We have demonstrated that compressible nonhydro-
static semi-implicit numerical models can be efficiently
integrated using preconditioned conjugate-residual solv-
ers. The CR algorithm, along with appropriate precon-
ditioners, accurately and efficiently solve the Helmholtz
equations arising from the semi-implicit discretization
for modeling applications ranging from hydrostatic to
nonhydrostatic scales. Moreover, the flexibility of the
CR solvers allow the solution of general Helmholtz
equations with variable coefficients and cross-derivative
terms included. Thus, the inclusion of a reference state
into the model formulation for the purpose of regular-
izing the Helmholtz equation, as well as the explicit
integration of the terrain terms and so-called nonlinear
pressure gradient and divergence terms, are not needed,
and need not dictate the model formulation. We propose
and demonstrate a more consistent and straightforward
model formulation that includes the full pressure gra-
dient and divergence terms in the semi-implicit for-
mulation, along with terms responsible for buoyancy
oscillations. This formulation should provide greater ac-
curacy and stability, particularly in nonhydrostatic scale
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simulations involving steep terrain where the traditional
formulation is unstable.

Two variants of an ADI preconditioner are used in
the CR algorithm. First, for hydrostatic flows (typically
using Dx $ 5–10 km) a single vertical sweep of the
ADI method is a very effective preconditioner. The ADI
parameter b2 in (28b) should be large, O(50) → O(500).
A single sweep of the full ADI method (28) should be
used for nonhydrostatic flows, and the parameters b1

and b2 should be O(10) or less. We have not found it
necessary to include the terrain terms in the ADI for-
mulation in our test cases, thus the ADI preconditioner
and the CR algorithm are easily implemented.

The CR algorithm need not be iterated until conver-
gence to machine accuracy. We find that further reduc-
tion of the residual in the Helmholtz solution, after con-
vergence to a particular level, does not increase the
accuracy of the overall solution. An a priori estimate of
the maximum allowable residual (ec) necessary for ac-
curate solutions in the semi-implicit models, for all sim-
ulation scales, is given in (29). Here, ec is found to
depend on the rms divergence in the solution, which
can be estimated from the time step, grid-length, and
velocity scales in the simulations.

The number of CR iterations needed for convergence
to ec is roughly proportional to the time step for most
of the flows we have simulated, even when a precon-
ditioner is used. Thus, given that the semi-implicit time
step in forward-in-time models is effectively one-half
that of leapfrog models, the semi-implicit forward-in-
time models are potentially twice as efficient as their
leapfrog counterpart, all other elements remaining
equal.

The CR method also can be used in semi-implicit
hydrostatic models. The effectiveness of an ADI pre-
conditioner would need to be evaluated in the hydro-
static applications. A conjugate gradient scheme with a
1D (in z) preconditioner has been used by Hill and Mar-
shall (1995) for inverting a Poisson equation arising in
an incompressible nonhydrostatic ocean model. The pre-
conditioner is not ADI, but rather is a hydrostatic pre-
conditioner in that it is exact in the limit of hydrostatic
flow. As noted earlier, a variety of efficient precondi-
tioners are possible and we make use of one that is easily
generalized and efficient for a range of problems.
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