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Abstract

A particular example is constructed to demonstrate that the finite-difference solution of the non-
linear barotropic vorticity equation may have instabilities of a different nature than those
caused by either an incorrect choice of the time increment or incorrect lateral boundary condi-
tions. This instability arises because the grid system cannot resolve wave lengths shorter than
about 2 grid intervals; when such wave lengths are formed by the non-linear interaction of
longer waves, the grid system interprets them incorrectly as long waves. The seemingly successful
use of a smoothing process to eliminate this difficulty is described.

1. Introduction
Suppose we are applying the barotropic non-
divergent vorticity equation to the two-dimen-
sional flow of an ideal fluid contained in a channel
between parallel walls located at y =0 and
y = W, using the finite-difference methods now
employed in numerical weather prediction. To
make matters simple, let us restrict the initial
flow patterns to those which have both the stream-
function y and vorticity { identically zero on both
lateral boundaries (y = 0 and y = W), and to
patterns which are periodic in x, so that p (x,
», 0)=v(x &+ L, y, 0). It is then clear that these
boundary conditions will be valid for all time,
and that the flow will maintain its periodic
character in x.

We introduce as usual a finite-difference grid,

= jA, J=0,1,2,...,J-1.(Jeven)
y=ka, k=012....,K
t =4, =0,12...

where A is the space increment and 4¢ the time
increment, and we suppose that W and L are
such that L = J4 and W= KA.

The vorticity equation is

i (LyN, .,
5_J<x,y)’ {= vy

6]

(We are not here concerned with the variation of
the Coriolis parameter.)

The finite-difference analogue of this which
would normally be used, is

s

At
V2(WPes1 = Yoo ik = A2

(729 - Si(y) = 8(V29) - G(e (D)

Here &; and d, are the usual simple centered
difference operators in the x and y directions:

S =ik —Wi-1
O () = Yircr1 — Vi -1-

vty represents the finite-difference approxima-
tion for the Laplacian:

A2 VZ,I'U~ W21.0=
=Wkt Wikt Y1t Q-1 — 4 (3)

(2) would be applied at the interior points
j=0,....,J—=1,and k =1,2,..., K- 1. At
the boundary points where &k =0 or X, w and V?p
are both taken to be identically zero for all time.
At the points for which j = 0 and j = J — 1, the
cyclic condition that w(j, k) = w(j & J, k) would
be used.

The streamfunction field defined in this manner
at the grid points j, k can then be represented by
the finite sum:

J2  K-1
27l . 2l
Yikr= Qe COS _7‘7 + blmt s T
=0 m=1
ztmk
-sin ——, 4
in — 4

501



N. A. PHILLIPS

We may investigate the magnitude of the
unavoidable instability as follows. From the
form of y,, we can think of 4 and B as equal
to Y%vA, where v is the velocity due to the dif-
ference in y, at the points (j+1, k) and (j, k).
Introducing this definition we find

3 [ vAr\?
cosh @ =1 +E(’) (T) .

The ordinary linearized analysis of computa-
tional stability would have led us to a choice
of (vAt/A) less than 1. For small (vAr/4),® ~ 0.17 -
-(v4t4) ~ 0.1, say, and only 20 time steps will
produce an e-fold amplification.

The above analysis is of course only a very
particular example. A more thorough analysis of
the general case is perhaps too difficult to make,
but it seems unlikely that the mere presence of
more than 3 degrees of freedom would remove
this instability.

3. Elimination of the instability by smoothing

Several years ago, the writer applied the tech-
niques of numerical prediction to the study of the
general circulation of the atmosphere (PHILLIPS,
1956). This was done by making a forecast for
an extended period with a 2-level geostrophic
model. The equations included a crude repre-
sentation of heating and friction, and were ap-
plied to a simplified geometrical model of the
atmosphere—the so-called “f-plane’”. After a
period of several weeks, the appearance of large
truncation errors caused an almost explosive
increase in the total energy of the system.

In an attempt to explore this type of computa-
tion error, a similar set of equations has recently
been solved again, using a smaller horizontal grid
interval —166 2/, km compared to the grid inter-
vals of 4x = 375km and 4y = 625 km in the
earlier experiment. Although enough changes
were also made in the differential equations (e.g.
the representation of friction and of the heating
function) to prevent a complete comparison
between the two computations with respect to
truncation error, the same catastrophic errors
appeared again, and at a time when the dis-
turbance kinetic energy was about the same
magnitude as it was when the breakdown oc-
curred in the first computation. Thus, the reduc-
tion in the grid distance, 4, which should have
reduced the truncation error, did not appreciably
postpone the breakdown.

The graph of v'2 —proportional to the kinetic

|
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Fig. 1. Disturbance kinetic energy as a function of time.
The solid curve was obtained without smoothing, the
computations breaking down at about 56 days. The
dashed curve was obtained by periodically introducing a
filtering procedure.

energy per unit mass of the disturbance—for this
second computation is shown by the full line in
fig. 1. The truncation errors became significant
around 56 days, just prior to the explosive
increase in v'2.1

The dashed line in the figure is the curve
obtained by redoing the computations (beginning
at 48 days) and periodically eliminating all com-
ponents with wave lengths smaller than 4A4. This
was accomplished by performing a Fourier
analysis on the grid point data every Nth time
step, and then reconstituting the smoothed field,
retaining only wave numbers / =0, 1,..., J/4,
and m =1, 2,..., K[2. (N was variously chosen
so as to give either a 2-hr or 6-hr interval be-
tween smoothing operations, little difference
being found in the results for the two intervals.)

This smoothed forecast satisfied the energy
budgets very well. Let J be the difference between
(@) the observed change in total energy over a
one day interval and (b) the theoretical change in
total energy computed from the gains due to
non-adiabatic heating and the losses due to
friction. The root mean square value of o
during the smoothed forecast (48—70 days) was
only 0.23 joules sec™! m~2, and the mean value
of § was close to zero. (This was also typical
of the value in the unsmoothed forecast before

L For cxample the difference between the observed change
in total energy over one day and the change computed
from the energy transformation integrals first excecded
1 joule scc™! m~2 at 55 days.
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the sudden breakdown in that forecast at around
56 days.) This suggests that these geostrophic
equations do not readily transmit energy to
horizontal wave lengths shorter than 700 km—
a result already familiar from the analysis by
Fjortoft (FiorTOFT, 1953) — since otherwise the
smoothing process would have taken a noticeable
amount of energy out of the system. However,
the discussion above of the non-linear instability
mechanism, and the success of the smoothing
procedure, together indicate that even this small
rate of energy transfer may be sufficient to
activate non-linear computational instabilities in
wave lengths shorter than 4 grid intervals if these
components are not artificially removed.

In conclusion it may be appropriate to point

out that misrepresentation errors similar to (5)
will be encountered in solving the non-linear
“balance equation” by finite differences (BOLIN,
1955; CHARNEY, 1955). This has already been
noted by Shuman, who has developed some
useful approximations to the straightforward but
time consuming Fourier smoothing (SHUMAN,
1957).
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where the coefficients a@;,, and by, are functions
of 7. In this formulation, we take by, =
= bjpme =0, so that there are J(K — 1) degrees
of freedom in the grid point values of y; and
also in the coefficients a,,, and b,,,. We see from
this representation that the smallest wave length
in x recognized by the grid system is for / = J/2
and corresponds to a wave length of 24. In y,
the smallest wave length is for m = K — 1,and cor-
responds to a wave length of 24(K - 1)/K ~ 24.

Equation (2) is non-linear. If we consider the
interaction of 2 components ¥, and y,, which are
characterized by the wave numbers (/;, m,) and
(l,, my), it can be seen from (2) that they will
contribute to the time rate of change of the 4
components with wave numbers (I, + 1L, ny +m,),
L+, m—my), (G — b, my+my), and (I, — 1,
my, — m). This non-linear interaction determines
the transfer of kinetic energy between different
parts of the spectrum in this type of flow, and, in
the meteorological problem, becomes very im-
portant when forecasts are to be made for any
extended period of time.

We now recall that any distribution of y on
the grid network jk can be resolved into the
Fourier sum (4), containing only wave numbers
I=0,1,..,J2andm=1,2...,K~1. Itis
then clear that the interaction of y, and y, with
each other will not be interpreted correctly when
I, + I, > J/2 and/or when m, +m, > K— 1. For
example, if L, +6L = J—vr, with r < J/2, we
would find the following type of misrepresenta-
tion to occur:

2nj 2nj 27
cos -JEJ(II+12)=005 Tm(J—r)zcos—? r,

27j 27y 2nj
singl(ll+12)=sin—7(J—r)=—sin—mr.

(%)

Thus, instead of affecting wave number J —vr,
the components v, and 1w, will affect wave
number r. A similar misrepresentation will occur
in the m wave numbers whenever #n1, +n1, > K — 1.

2. An example of instability from this source

The potential seriousness of this misrepresenta-
tion can be seen by constructing an artificial
example.

We take only 2 components:

7j . ] . 2#k
Y, = [C, cos > + .Sy sin E] sin——,
6
.. 2nk (6)
y, = U, cos 7ij sin =

Thus [, = J/4, m;, = 2K/3, and I, = J/2, m, =

= 2 K/3 = m,. The misrepresentation which
occurs is of the form
3J J
L+l=—=J-—-=J-1,, and
4 4 %)
4K 2K
m1+m2=T=K—T:K—m1.

Since I/, —/, in this case is equal to /, and
m, — m, is equal to zero, no new harmonics are
generated by the finite-difference interaction of
v, and v,. The exact finite-difference solution of
this particular example is then described by the
three ordinary non-linear difference equations:

Coiy— Ceoy=alU,S,,
ST+[ - S‘r—l ZGUTCT;
U1+1 - U1_1=0,

(o =V3A1/542).

These are the result of inserting (6) into (2)
and (3). Although non-linear, they are simple
enough to be solved. We first find that U, has
the constant value 4 for even r and the constant

value B for odd r. C, (or S;) then satisfies the
difference equation:

C-r+2— 2 cosh ch"i‘ C-”Q:O,

‘

®)

where cosh @ =1 + 4 624B is a constant. This
difference equation has four solutions:

or A _6r

e, (- l)’ez, e 2, (- 1)e 2

If A and B have the same sign, @ is a real
number, and two of the solutions will amplify
exponentially. This “instability” cannot be clim-
inated by reducing At.

If A and B are of opposite sign, but small
enough in magnitude so that 1+ 1 ¢*4B > — 1,
© is pure imaginary and we have four neutral
solutions. However, if A and B are of opposite
sign but large enough in magnitude so that
14-4 0248 < — 1, the solutions are again of the
form exp + ®7/2 where cosh @ = |l +} 6°4B|.
These again will amplify with time, since @ will
be real. Thus, when A4 and B are of opposite sign,
the instability can be eliminated by reducing At.
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